
www.manaraa.com

Softw Syst Model (2014) 13:391–432
DOI 10.1007/s10270-012-0246-z

REGULAR PAPER

An approach for modeling and detecting software performance
antipatterns based on first-order logics

Vittorio Cortellessa · Antinisca Di Marco ·
Catia Trubiani

Received: 11 April 2011 / Revised: 22 December 2011 / Accepted: 24 March 2012 / Published online: 21 April 2012
© Springer-Verlag 2012

Abstract The problem of interpreting the results of
performance analysis is quite critical in the software per-
formance domain. Mean values, variances and probability
distributions are hard to interpret for providing feedback
to software architects. Instead, what architects expect are
solutions to performance problems, possibly in the form of
architectural alternatives (e.g. split a software component
in two components and re-deploy one of them). In a soft-
ware performance engineering process, the path from analy-
sis results to software design or implementation alternatives
is still based on the skills and experience of analysts. In this
paper, we propose an approach for the generation of feedback
based on performance antipatterns. In particular, we focus on
the representation and detection of antipatterns. To this goal,
we model performance antipatterns as logical predicates and
we build an engine, based on such predicates, aimed at detect-
ing performance antipatterns in an XML representation of the
software system. Finally, we show the approach at work on
a case study.

Keywords Software performance antipatterns ·
Performance analysis · Software architectures

1 Introduction

Since more than a decade the problem of modeling and
analyzing software performance from the beginning of the
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lifecycle has been tackled with several approaches. The
generation of performance models from software artifacts
has gained a core role in this domain, and automation
has emerged as a key factor to address some major prob-
lems in software development, such as shorter time to mar-
ket and the lack of specific skills to build performance
models.

Figure 1 schematically represents the typical steps of
a complete performance modeling and analysis process.
In the figure, rounded boxes represent operational steps
whereas square boxes represent input/output data. Arrows
numbered from 1 through 4 represent the typical forward
path from an annotated software architectural model (i.e.
a software model enriched with performance-related infor-
mation) through the production of performance indices of
interest.

While in the forward path, well-founded approaches have
been introduced to automate all steps [5,7,12,46], there is a
clear lack of automation in the backward path that brings the
analysis results back to the software architectural model (i.e.
arrow 6 in Fig. 1).

The backward path is represented in the figure as a macro-
step of results interpretation and feedback generation that
in the following we simply call feedback. In this step, the
performance indices obtained from the model solution, typi-
cally represented by average values and/or distribution func-
tions, are interpreted to detect performance problems, if any.
A performance problem originates from a set of unfulfilled
requirement(s) (such as the estimated response time of a
service is higher than the required one). If all the require-
ments are satisfied, then the feedback obviously suggests no
changes.

Once performance problems are found, with a certain
accuracy, in the model, solutions can be applied to remove
them. Typical solutions consist in design alternatives that
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Fig. 1 Software performance
modeling and analysis process

modify the original software architectural model to achieve
better performance.1

As shown in Fig. 1, the (annotated) software architectural
model (label 5.a) and the performance indices (label 5.b) are
inputs to the feedback step that searches for problems in the
model and provides feedback (label 6) to the software archi-
tectural model in the form of design alternatives that remove
the performance problems found.

This type of search may be quite complex and should be
smartly driven towards the problematic areas of the architec-
tural model. The complexity of this step stems from several
factors:

(i) the complexity of the software architectural models.
The origin of performance problems appear only look-
ing at the several model elements described in different
views of a system (such as static structure, behaviour,
etc.) requiring that the characteristics among views
need to be cross-checked.

(ii) the joint examination of performance indices. A sin-
gle performance index (e.g. the utilization of a service
center) could be not enough to localize the critical
parts of an architectural model, a performance prob-
lem emerges only if other indices (e.g. the throughput
of a neighbor service center) are analyzed.

(iii) the granularity of the performance analysis. The indi-
ces can be estimated at different levels of granularity
(e.g. the response time can be evaluated at the level of
a cpu device, or at the level of a system service that
spans on different devices).

Therefore, the need of guidance in this searching process
is clear. Strategies to drive the search can rely on informa-
tion that may depend on several factors such as the adopted

1 We can compare this scenario of performance-driven software design
assistance with the work of a physician: observing a sick patient (the
model), studying the symptoms (unsatisfactory values of performance
indices), making a diagnosis (a software problem), prescribing a therapy
(design alternatives).

software and performance modeling notations2, the appli-
cation domain (e.g. real time systems), the environmental
constraints.

In this context, we think that the most promising elements
that can drive this search are performance antipatterns [37]
(label 5.c in Fig. 1). Antipatterns basically represent typi-
cal patterns (independent from the adopted model notation,
the application domain, etc.) that, if occurring in a model,
may induce performance problems. An antipattern definition
includes: the bad practices specification in terms of model
elements (i.e. the problem), and the actions to take to solve the
problem (i.e. the solution). Hence we consider that the feed-
back step benefits from performance antipatterns by focus-
ing the searching process on detecting antipatterns that have
well-known solutions.

In this paper, we present an approach to make perfor-
mance analysis results usable at the software architectural
model level. In particular, we tackle the problem of using
performance antipatterns to provide an implementation of the
Results Interpretation and Feedback Generation steps from
Fig. 1. This paper is an extension of [13], with the following
main contributions: (i) the formalization of all the 12 antip-
atterns we examine; (ii) a case study that clearly shows the
beneficial effects of using antipatterns in the backward path
of the software performance lifecycle.

Moreover, since the publication of [13] the authors have
gained more experience using antipatterns in concrete mod-
eling languages (e.g. [11,44]). This experience led us to con-
sider additional issues that are included in the formalization
presented in this paper, making it more mature. For exam-
ple, the Concurrent Processing Systems antipattern logic-
based representation has been refined in comparison to [13]
by introducing a higher level of detail in the analysis of hard-
ware resources (see more details in Sect. 4.1.3).

2 Modeling is of crucial relevance since different models and relative
notations describe the software system highlighting different features
of it. Different modeling notations can be adopted to describe both the
software architectural models (e.g. UML [3], Automata [23], Process
Algebras [30], etc.) and performance ones (e.g. Queueing Networks
[26], Simulation Models [6], etc.).
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The paper is organized as follows. Section 2 provides
more technical details on the implementation we propose
for the feedback step of the software performance process.
Sections 3 and 4 present the informal representation and
the logical predicates-based formalization of antipatterns,
respectively. Section 5 describes the engine, based on the
specified predicates, which detects the performance antip-
atterns and provides suitable guidelines to remove them. In
Sect. 6, we propose a case study as a proof of concept of
our approach, while in Sect. 7 we discuss the open issues of
the proposed approach. Section 8 presents related work, and
finally Sect. 9 concludes the paper providing remarks and
future works.

2 Antipatterns-based approach

Up to now, in literature, performance antipatterns have only
been defined in natural language [37]. Hence, the core ques-
tion addressed in this work is: how to represent a performance
antipattern to support its automatic detection? To this aim, we
introduce a modeling notation-independent representation of
performance antipatterns.

Figure 2 sketches the implementation we provide for the
feedback step. Here, a software architectural model is an
abstract view of the software system. It is composed of com-
plementary types of models providing several system infor-
mation from different perspectives: (i) the static perspective
showing the software resources; (ii) the dynamic perspec-
tive showing the behavior of the system; (iii) the deployment
perspective showing the hardware resources, etc. [38]. For
the sake of analysis, models must be annotated with perfor-
mance-related information such as the system workload, the
service demands, the hardware characteristics, etc.3 We refer
to these enriched models as (annotated) ones.

Performance indices [24] (see Fig. 2) refer to extra func-
tional properties of the software system: (i) response time
(i.e. the time interval between a user request of a service and
the response of the system); (ii) utilization (i.e. the ratio of
busy time of a resource in a time slot); (iii) throughput (i.e.
the rate at which requests can be handled by a system).

To make performance antipatterns processable (that means
detectable and solvable) by a machine, we execute a prelim-
inary Modeling step during which we specify antipatterns
as logical predicates. Such predicates define conditions on
software architectural model elements (e.g. number of inter-
actions among components, resource utilization, etc.) needed

3 It is necessary to add annotations to parameterize the performance
models. This information either comes from the requirements the sys-
tem undergoes, or is estimated from performance experts or is observed
from similar existing systems. In particular, the workload specification
is part of the user requirements and indicates the amount of the expected
requests to the software system.

to detect antipatterns. We organized these architectural model
elements in an XML Schema reported in Appendix A.

Starting from an annotated software architectural model
(label 5.a) and its performance indices (label 5.b), we execute
an Extracting step during which the extractor engine gener-
ates: (i) an XML representation of the Architectural Model
conforming to the XML Schema that contains all and only the
software architectural model information we need to detect
performance antipatterns; (ii) a set of Antipatterns Bound-
aries that drive the interpretation of performance analysis
results, since they define thresholds that will be compared
with the predicted performance values to support the detec-
tion of the performance critical elements.

The Detection step is the operational counterpart of the
antipatterns declarative definitions as logical predicates. In
fact, it takes as input the XML representation of the software
architectural model and the antipatterns boundaries, and it
returns a list of detected performance antipatterns instances,
i.e. the description of the detected problems as well as their
solutions (instantiated on the architectural model elements).
Such list represents the feedback, since it consists of a set
of alternative refactoring actions, suggested to the software
designers in the backward path (label 6 of Fig. 2), and aimed
at removing the detected antipatterns.

Note that, both the Modeling and the Detection steps of the
process (see Fig. 2) are reusable across different modeling
languages. In contrast, the Extractor engine needs to under-
stand the language in which the annotated software model
and the performance indices are expressed, hence it depends
on them. Although performance indices refer to the perfor-
mance model, the Extractor engine needs to understand both
modeling languages (for software and performance) and their
mapping. The problem of bridging software and performance
models is not trivial, since a large semantic gap between such
models may occur [32].

The formalization we propose for performance antipat-
terns provides only the concepts that the antipatterns require
to be automatically detected. This means that in the formal-
ization we do not include concepts that are useless for the
antipatterns representation. Modeling languages may have a
broader scope that covers a large and diverse set of appli-
cation domains, hence many concepts are not useful for our
aims. For example, in UML [3] the state machines are used
for modeling discrete behavior through finite state-transition
systems and many concepts (e.g. connectionPointReference,
port, ProtocolConformance, etc.) are ignored in our formal-
ization.

Moreover, the formalization is not coupled with the detec-
tion engine. Currently, our engine has been implemented in
Java, but other types of engine can be implemented on the
basis of the formalization we provide.

In this paper, the decision on which antipatterns to remove
is taken by the software designer, who will manually execute
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Fig. 2 Results Interpretation
and Feedback Generation step

the suggested refactoring action. Indeed this final task could
be automated only under certain assumptions, because the
application of antipattern solutions can be restricted by sev-
eral constraints. Examples of such constraints may refer to:
(i) the usage of legacy components that cannot be split and
re-deployed whereas the antipattern solution suggests such
actions; (ii) the development process is subject to budget lim-
itations that do not allow to adopt an antipattern solution due
to its extremely high cost. Many other examples can be pro-
vided of constraints that (implicitly or explicitly) may affect
the antipattern solution activity (see more details in Sect. 7).
Due to these complex situations, we prefer to delegate the
selection of the antipatterns to be removed to the software
designers that can take into account some of the constraints
the system must satisfy.

As a concluding remark, we want to point out that the
solution of one or more antipatterns does not guarantee a pri-
ori performance improvements, because the entire process
is based on heuristic evaluations (e.g. antipatterns bound-
aries, see Fig. 2) and decisions. However, an antipattern-
based refactoring action is usually a correctness-preserving
transformation that improves the quality of the software. For
example, the interaction between two components might be
refactored to improve performance by sending fewer mes-
sages with more data per message. This transformation does
not alter the semantics of the application, but it may improve
the overall performance.

Hence, the forward path has to be taken again, start-
ing from the updated software architectural model and end-

ing up with new performance indices that might confirm if
performance problems are actually removed. Only after this
validation the software lifecycle can proceed, in fact if the
validation is unsuccessful then the backward path has to run
again and the whole process is repeated.4

3 Performance antipatterns definition

Patterns are common solutions to problems that occur in
many different contexts [20]. Design patterns capture expert
knowledge about “best practices” in software design in a
form that allows knowledge to be reused and applied in the
design of many different types of software.

Antipatterns are conceptually similar to patterns in that
they document recurring solutions to common design prob-
lems [9]. They are known as antipatterns because their use
may produce negative consequences. Antipatterns document
common mistakes (i.e. “bad practices”) made during soft-
ware development, as well as solutions of the problems deriv-
ing from these mistakes.

Performance Antipatterns define bad practices that induce
performance problems, and their solutions. In this paper, we
refer only to antipatterns that are independent on the notation
used to represent software and performance models. This
apparent restriction allows to focus on the most common

4 In a perfect analogy with what a (good) physician does to check if the
prescribed therapy works.
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antipatterns that can occur in any model, because they are
not related to any specific modeling notation. For a similar
reason, performance antipatterns of interest do not have to
be specific to any application domain.

The main source of performance antipatterns is the work
done across years by Smith and Williams that have ultimately
defined a number of 14 notation- and domain-independent
antipatterns [37]. They describe settings where sub-optimal
performance design choices have been made. Some other
papers introduce antipatterns that may occur throughout dif-
ferent technologies, but they are not as general as the ones
defined by Smith and Williams (see Sect. 8).

Table 1 lists all the antipatterns we consider. Each row
of Table 1 represents a specific antipattern, and it character-
ized by three fields: antipattern name, problem and solution
textual descriptions. From the original list of 14 antipatterns
defined by Smith and Williams in [37], only two antipatterns
have not been considered for the following reason: (1) the
Falling Dominoes antipattern refers, besides the performance
problems, to some reliability and fault tolerance issues, so it
is at the moment out of our interest; (2) the Unnecessary
Processing antipattern deals with the semantics of a soft-
ware application because it considers the relevance of the
application code, i.e. an information not usually included in
software architectural models.

This list of performance antipatterns has been here
enriched with an additional attribute. As shown in the left-
most part of Table 1, we have partitioned antipatterns in two
different categories: antipatterns detectable by single values
of performance indices (such as mean, max or min values),
named as single-value Performance Antipatterns, and antip-
atterns requiring the trend (or evolution) of the performance
indices during the time to capture the performance problems
in the software system, named as multiple-values Perfor-
mance Antipatterns. The mean, max or min values are not
sufficient to define the latter category of antipatterns, unless
these values refer to several observation time frames. Due
to these characteristics, the performance indices needed to
detect such antipatterns must be obtained via system simu-
lation or monitoring.

An example of a single-value antipattern is the Circuitous
Treasure Hunt (see Table 1), since it occurs when a large
amount of processing is required to perform a task and the
mean value is able to capture the problem. An example of a
multiple-values antipattern is the Traffic Jam (see Table 1),
since it occurs when processing time increases as the sys-
tem is used and the trend of values is required to catch such
behavior. A graphical representation of these two antipat-
terns is provided in Figs. 3 and 4, respectively, where both
antipatterns are visualized in UML-like notation for a quick
comprehension.

Note that the graphical representation of the antipatterns
provides our interpretation of the informal definition reported

in Table 1: different formalizations of antipatterns can be
originated by laying on different interpretations of their tex-
tual specification [37].

Figure 3 provides a graphical representation of the Circu-
itous Treasure Hunt antipattern.

The upper side of Fig. 3 describes the system proper-
ties of a Software Architectural Model S with a Circuitous
Treasure Hunt problem: (a) Static View there is a software
entity instance, e.g. Sx , retrieving a lot of information from
a database; (b) Dynamic View the software instance Sx gen-
erates a large number of database calls by performing sev-
eral queries; (c) Deployment View the processing node on
which the database is deployed, i.e. pNodeDB , might reveal a
high utilization value among its cpu(s) and/or disk(s) devices
($util P1, . . . , $util Pn, $util M1, . . . , $util Mm). Let us
define with $max ProcUtil and $max MemUtil the max-
imum utilization among cpu(s) and disk(s) devices, respec-
tively, hence at least one of these values overcomes a
threshold boundary. Furthermore, a database transaction usu-
ally requires a higher utilization of disk devices instead of cpu
ones, hence $max MemUtil is expected to be larger than
$max ProcUtil. The occurrence of such properties leads
to assess that the software entity Database originates an
instance of the Circuitous Treasure Hunt antipattern in the
Software Architectural Model S (see Table 1).

The lower side of Fig. 3 contains the design changes that
can be applied according to the Circuitous Treasure Hunt
solution. The following refactoring action is represented: (a)
the database must be restructured to reduce the number of
database calls and to retrieve the needed information with
fewer database transactions. As consequences of the previous
action, if the information is retrieved with a smarter organiza-
tion of the database, then the utilization of hardware devices
is expected to improve in the Software Architectural Model
S′, i.e. $max ProcUtil ′ and particularly $max MemUtil ′.

Figure 4 provides a graphical representation of the Traffic
Jam antipattern.

The upper side of Fig. 4 describes the system properties
of a Software Architectural Model S with a Traffic Jam prob-
lem: (a) Static View, there is a software entity instance S
offering an operation op; (b) the (predicted) response time
of the operation op shows “a wide variability in response
time which persists long” [34]. It means that there is a time
interval showing a wide variability, e.g. the response time of
the operation op in the time interval k ($RT (op, k)) is much
lower than the (predicted) response time of the operation op
in the subsequent time interval k + 1 ($RT (op, k + 1)). The
variability persists in the interval from k + 1 to n, hence
the (predicted) response time of the operation op in the time
interval k + 1 ($RT (op, k + 1)) is almost equal to the (pre-
dicted) response time of the operation op in the time interval
n ($RT (op, n)). The occurrence of such properties leads to
assess that the software instance S originates an instance
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Table 1 Performance antipatterns [37]

Name Problem Solution

Single-value Circuitous Treasure Hunt Occurs when an object must look
in several places to find the
information that it needs. If a
large amount of processing is
required for each look,
performance will suffer

Refactor the design to provide
alternative access paths that do
not require a circuitous treasure
hunt (or to reduce the cost of
each look)

Blob (or god class/component) Occurs when a single class or
component either (1) performs all
of the work of an application or
(2) holds all of the application’s
data. Either manifestation results
in excessive message traffic that
can degrade performance

Refactor the design to distribute
intelligence uniformly over the
application’s top-level classes,
and to keep related data and
behavior together

Unbalanced Processing

Concurrent Processing Systems Occurs when processing cannot
make use of available processors

Restructure software or change
scheduling algorithms to enable
concurrent execution

“Pipe and Filter” Architectures Occurs when the slowest filter in a
“pipe and filter” architecture
causes the system to have
unacceptable throughput

Break large filters into more stages
and combine very small ones to
reduce overhead

Extensive Processing Occurs when extensive processing
in general impedes overall
response time

Move extensive processing so that
it does not impede high traffic or
more important work

Empty Semi Trucks Occurs when an excessive number
of requests is required to perform
a task. It may be due to inefficient
use of available bandwidth, an
inefficient interface, or both

The batching performance pattern
combines items into messages to
make better use of available
bandwidth

Tower of Babel Occurs when processes excessively
convert, parse, and translate
internal data into a common
exchange format such as XML

The fast path performance pattern
identifies paths that should be
streamlined. Minimize the
conversion, parsing, and
translation on those paths

One-Lane Bridge Occurs at a point in execution
where only one, or a few,
processes may continue to
execute concurrently (e.g. when
accessing a database)

To alleviate the congestion, use the
shared resources principle to
minimize conflicts

Excessive Dynamic Allocation Occurs when an application unnecessarily
creates and destroys large numbers of
objects during its execution. The
overhead required to create and destroy
these objects has a negative impact on
performance

(1) Recycle objects (via an object
pool) rather than creating new
ones each time they are needed.
(2) Use the Flyweight pattern to
eliminate the need to create new
objects

Multiple-values The Ramp Occurs when processing time
increases as the system is used

Select algorithms or data structures
based on maximum size or use
algorithms that adapt to the size

Traffic Jam Occurs when one problem causes a
backlog of jobs that produces
wide variability in response time
which persists long after the
problem has disappeared

Begin by eliminating the original
cause of the backlog. If this is not
possible, provide sufficient
processing power to handle the
worst-case load

More is Less Occurs when a system spends
more time thrashing than
accomplishing real work because
there are too many processes
relative to available resources

Quantify the thresholds where
thrashing occurs (using models
or measurements) and determine
if the architecture can meet its
performance goals while staying
below the thresholds
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Fig. 3 A graphical
representation of the Circuitous
Treasure Hunt antipattern

of the Traffic Jam antipattern in the Software Architectural
Model S (see Table 1).

The lower side of Fig. 4 contains the design changes that
can be applied according to the Traffic Jam solution. It is diffi-
cult to solve such antipattern at the architectural level because
it is not trivial to identify the original cause of the backlog (see
Table 1). However, it is possible to increase the processing
node rate ($proces Rate′) on which S is deployed. In fact,
such refactoring action is meant to manifest the resolution of
the antipattern at the architectural level. As consequences of
the previous action, in the Software Architectural Model S′

the response time of the operation op is expected to increase
in a slower way, i.e. $RT (op, k + 1)′.

4 Performance antipatterns as logical predicates

In this section, we formalize the representation of perfor-
mance antipatterns as logical predicates. The basic idea is
that an antipattern identifies unwanted software and/or hard-
ware properties, thus an antipattern can be formulated as
a (maybe complex) predicate on the software architectural
model elements.
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Fig. 4 A graphical representation of the Traffic Jam antipattern

The presentation of the logical predicates is organized into
two groups, the single-value (see Sect. 4.1) and the multiple-
values (see Sect. 4.2) antipatterns.

A section is dedicated to an antipattern and is organized
as follows. From the informal representation of the problem
(as reported in Table 1), a set of basic predicates (B Pi ) is
built, where each B Pi addresses part of the antipattern prob-
lem specification. The basic predicates are first described in a
semi-formal natural language and then formalized by means
of first-order logics. Note that the operands of basic pred-
icates are XML Schema elements (see Appendix A), here
denoted with the typewriter font.

We organize the software architectural model elements
into views, each capturing a different aspect of the system.
Similar to the Three-View Model [45], we consider three dif-
ferent views representing three sources of information: the
Static View that captures the software elements (e.g. classes,
components) and the static relationships among them; the
Dynamic View that represents the interaction (e.g. messages)
that occurs between the software entities elements to provide
the system functionalities; and finally the Deployment View
that describes the hardware elements (e.g. processing nodes)
and the mapping of the software entities onto the hardware
platforms.

Fig. 5 Bird’s-eye look of the Schema and its views

Figure 5 provides a bird’s eye look of our XML Schema
(it is fully described in Appendix A) that sketches the three
views and their intersection5 in the central and shaded square
(i.e. views overlapping). A Service is defined at a higher level,
because it can be described by means of elements belonging
to all the three views.

The benefit of introducing (static, dynamic, deployment)
views is that the performance antipattern specification can
be partitioned on their basis: the predicate expressing a per-
formance antipattern is in fact the conjunction of sub-predi-
cates, each referring to a different view. However, to specify
an antipattern it might not be necessary information com-
ing from all views, because certain antipatterns involve only
elements of some views.

In the proposed formalization to capture bad practices, we
introduce: (i) a set of functions to elaborate system properties
represented in the predicates as F f uncName (e.g. the number
of messages sent by a software entity towards an other one);
(ii) a set of thresholds to interpret the system features rep-
resented in the predicates as T hthreshold Name (e.g. the upper
bound for the hardware resource utilization). Note that all
functions and thresholds are summarized in Appendix C.

4.1 Single-value performance antipatterns

In this section, we report some examples of the Perfor-
mance Antipatterns that can be detected by single values
of performance indices (such as mean, max or min values).
In particular, we formalize Circuitous Treasure Hunt, Blob,
Concurrent Processing Systems, Empty Semi Trucks antip-
atterns in the following, whereas the remaining ones are
reported in Appendix B.

5 Note that it exists an overlapping among the views (e.g. the elements
interacting in the dynamics of a system are also part of the static view).
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4.1.1 Circuitous Treasure Hunt

Circuitous Treasure Hunt [37] has the following problem
informal definition: “occurs when an object must look in
several places to find the information that it needs. If a large
amount of processing is required for each look, performance
will suffer” (see Table 1).

We formalize this sentence with three basic predicates:
the B P1 predicate whose elements belong to the Static and
the Dynamic Views; the B P2 and B P3 predicates whose ele-
ments belong to the Deployment View.

B P1 There are two SoftwareEntityInstances,
e.g. swEx and swEy , such that: (i) they are both involved in
a Service S; (ii) the instance playing the senderRole
(e.g. swEx ), sends an excessive number of Messages to
the one,playing the receiverRole (e.g. swEy); (iii) the
receiver is a database (as captured by the isDB attribute). To
formalize such interpretation we use the Fnum DBmsgs func-
tion that provides the number of messages sent by swEx to
swEy in the Service S. The property of sending an exces-
sive number of messages can be checked by comparing the
output value of the Fnum DBmsgs function with a threshold
T hmax DBmsgs :

swEy .is DB = true (1)

Fnum DBmsgs(swEx , swEy, S) ≥ T hmax DBmsgs (2)

B P2 The ProcesNode PswEy on which the soft-
ware instance swEy is deployed has a heavy computation.
That is, the Utilization of hardware entities belong-
ing to the ProcesNode PswEy exceed a certain threshold
T hmax HwUtil . For the formalization of this characteristic,
we recall that the Fmax HwUtil function with the ’all’ option
returns the maximum Utilization among all the hard-
ware entities of the processing node. We compare such value
with a threshold T hmax HwUtil :

Fmax HwUtil(PswEy , all) ≥ T hmax HwUtil (3)

B P3 Since, in general, a database access utilizes more disk
than cpu, we require that the maximum disk(s) Utiliza-
tion is larger than the maximum cpu(s) utilization of
the ProcesNode PswEy :

Fmax HwUtil(PswEy , disk) > Fmax HwUtil(PswEy , cpu) (4)

Summarizing, the Circuitous Treasure Hunt antipattern
occurs when the following composed predicate is true:

∃swEx , swEy ∈ swE, S ∈ S | (1) ∧ (2) ∧ (3) ∧ (4)

where swE represents the set of SoftwareEntityIn-
stances, and S represents the set of Services in the soft-
ware system. Each (swEx , swEy, S) instance satisfying the
predicate must be pointed out to the designer for a deeper

analysis, because it represents a Circuitous Treasure Hunt
antipattern.

4.1.2 Blob (or god class/component)

Blob (or “god” class/component) [33] has the following
problem informal definition: “occurs when a single class
either 1) performs all of the work of an application or 2) holds
all of the application’s data. Either manifestation results in
excessive message traffic that can degrade performance.”
(see Table 1).

We formalize this sentence with four basic predicates: the
B P1 predicate whose elements belong to the Static View;
the B P2 predicate whose elements belong to the Dynamic
View; and finally the B P3 and B P4 predicates whose ele-
ments belong to Deployment View.

B P1 Two cases can be identified for the occurrence of the
blob antipattern.

In the first case, there is at least one SoftwareEntity
Instance, e.g. swEx , such that it “performs all of the
work of an application” [33], while relegating other instances
to minor and supporting roles. Let us define the function
FnumClientConnects that counts how many times the software
entity instance swEx is in a Relationship with other
software entity instances by assuming a clientRole for
swEx . The property of performing all the work of an appli-
cation can be checked by comparing the output value of the
FnumClientConnects function with a threshold T hmaxConnects :

FnumClientConnects(swEx ) ≥ T hmaxConnects (5)

In the second case, there is at least one Software
EntityInstance, e.g. swEx , such that it “holds all of
the application’s data” [33]. Let us define the function
FnumSupplierConnects that counts how many times the soft-
ware entity instance swEx is in a Relationship with
other software entity instances by assuming the suppli-
erRole for swEx . The property of holding all of the
application’s data can be checked by comparing the output
value of the FnumSupplierConnects function with a threshold
T hmaxConnects :

FnumSupplierConnects(swEx ) ≥ T hmaxConnects (6)

B P2 swEx performs most of the business logics in the
system or holds all the application’s data, thus it generates or
receives excessive message traffic. Let us define by Fnum Msgs

the function that takes as input a software entity instance with
a senderRole, a software entity instance with a receiv-
erRole, and a Service S, and returns the multiplicity of
the exchanged Messages. The property of excessive mes-
sage traffic can be checked by comparing the output value of
the Fnum Msgs function with a threshold T hmax Msgs in both
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directions:

Fnum Msgs(swEx , swEy, S) ≥ T hmax Msgs (7a)

Fnum Msgs(swEy, swEx , S) ≥ T hmax Msgs (7b)

The performance impact of the excessive message traf-
fic can be captured by considering two cases. The first case
is the centralized one (modeled by the B P3 predicate), i.e.
the blob software entity instance and the surrounding ones
are deployed on the same processing node, hence the perfor-
mance issues due to the excessive load may come out by eval-
uating the utilization of such processing node. The second
case is the distributed one (modeled by the B P4 predicate),
i.e. the Blob software entity instance and the surrounding
ones are deployed on different processing nodes, hence the
performance issues due to the excessive message traffic may
come out by evaluating the utilization of the network links.

B P3 The ProcesNode Pxy on which the software
entity instances swEx and swEy are deployed shows heavy
computation. That is, the utilization of a hardware
entity of the ProcesNode Pxy exceeds a certain threshold
T hmax HwUtil . For the formalization of this characteristic, we
use the Fmax HwUtil function that has two input parameters:
the processing node, and the type of HardwareEntity,
i.e. ‘cpu’, ‘disk’, or ‘all’ to denote no distinction between
them. In this case, the Fmax HwUtil function is used to deter-
mine the maximum Utilization among ’all’ the hard-
ware entities of the processing node. We compare such value
with a threshold T hmax HwUtil :

Fmax HwUtil(Pxy, all) ≥ T hmax HwUtil (8)

B P4 The ProcesNode PswEx on which the software
entity instance swEx is deployed, shows a high utilization
of the network connection towards the ProcesNode PswEy

on which the software entity instance swEy is deployed. Let
us define by Fmax NetUtil the function that provides the max-
imum value of the usedBandwidth overall the network
links joining the processing nodes PswEx and PswEy . We must
check if such value is higher than a threshold T hmax NetUtil :

Fmax NetUtil(PswEx , PswEy ) ≥ T hmax NetUtil (9)

Summarizing, the Blob (or “god” class/component)
antipattern occurs when the following composed predicate
is true:

∃swEx , swEy ∈ swE, S ∈ S |
((5) ∨ (6)) ∧ ((7a) ∨ (7b)) ∧ ((8) ∨ (9))

where swE represents theSoftwareEntityInstances,
and S represents the Services in the software system. Each
(swEx , swEy, S) instance satisfying the predicate must be
pointed out to the designer for a deeper analysis, because it
represents a Blob antipattern.

4.1.3 Concurrent Processing Systems

Concurrent Processing Systems [35] have the following
problem informal definition: “occurs when processing can-
not make use of available processors” (see Table 1).

We formalize this sentence with three basic predicates:
the B P1, B P2, B P3 predicates whose elements belong to the
Deployment View. In the following, we denote with P the set
of the ProcesNode instances in the system.

B P1 There is at least one ProcesNode in P, e.g. Px ,
having a large QueueLength. Let us define by Fmax QL the
function providing the maximum QueueLength among all
the hardware entities of the processing node. The first condi-
tion for the antipattern occurrence is that the value obtained
from Fmax QL is larger than a threshold T hmax QL :

Fmax QL(Px ) ≥ T hmax QL (10)

B P2 Px has a heavy computation. This means that
the utilizations of some hardware entities in Px (i.e. cpu,
disk) exceed predefined limits. We use the already defined
Fmax HwUtil to identify the highest utilization of cpu(s)
and disk(s) in Px , and then we compare such utilizations to
the T hmaxCpuUtil and T hmax DiskUtil thresholds:

Fmax HwUtil(Px , cpu) ≥ T hmaxCpuUtil (11a)

Fmax HwUtil(Px , disk) ≥ T hmax DiskUtil (11b)

B P3 The processing nodes are not used in a well-balanced
way, as there is at least another instance of ProcesNode
in P, e.g. Py , whose Utilization of the hardware enti-
ties, differentiated according to their type (i.e. cpu, disk), is
smaller than the one in Px . In particular, two new thresholds,
i.e. T hminCpuUtil and T hminDiskUtil , are introduced:

Fmax HwUtil(Py, cpu) < T hminCpuUtil (12a)

Fmax HwUtil(Py, disk) < T hminDiskUtil (12b)

Summarizing, the Concurrent Processing Systems antipat-
tern occurs when the following composed predicate is true:

∃Px , Py ∈ P |
(10) ∧ [((11a) ∧ (12a)) ∨ ((11b) ∧ ((12b)))]

where P represents the set of all the ProcesNodes in the
software system. Each (Px , Py) instance satisfying the predi-
cate must be pointed out to the designer for a deeper analysis,
because it represents a Concurrent Processing Systems anti-
pattern.

4.1.4 Empty Semi Trucks

Empty Semi Trucks [37] have the following problem infor-
mal definition: “occurs when an excessive number of
requests is required to perform a task. It may be due to
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inefficient use of available bandwidth, an inefficient inter-
face, or both” (see Table 1).

We formalize this sentence with three basic predicates: the
B P1 predicate whose elements belong to the Dynamic View;
the B P2 and B P3 predicates whose elements belong to the
Deployment View.

B P1 There is at least one SoftwareEntityIn-
stance swEx that exchanges an excessive number of
Messages with remote software entities. Let us define by
Fnum Rem Msgs the function that calculates the number of
remote messages sent by swEx in a Service S:

Fnum Rem Msgs(swEx , S) ≥ T hmax Rem Msgs (13)

B P2 The inefficient use of available bandwidth means
that the SoftwareEntityInstance swEx sends a
high number of messages without optimizing the network
capacity. Hence, the ProcesNode PswEx , on which the
software entity instance swEx is deployed, reveals an utili-
zation of the network lower than the threshold T hminNetUtil .
We focus on theNetworkLink(s) that connect PswEx to the
whole system, i.e. the ones having PswEx as their EndNode.
Since we are interested to the network links on which the soft-
ware instance swEx generates traffic, we restrict the whole
set of network links to the ones on which the interactions
of the software instance swEx with other communicating
entities take place:

Fmax NetUtil(PswEx , swEx ) < T hminNetUtil (14)

B P3 The inefficient use of interface means that the soft-
ware instance swEx communicates with a certain number of
remote instances, all deployed on the same remote process-
ing node. Let us define by Fnum Rem I nst the function that pro-
vides the maximum number of remote instances with which
swEx communicates in the service S. The antipattern can
occur when this function returns a value higher or equal than
a threshold T hmax Rem I nst :

Fnum Rem I nst (swEx , S) ≥ T hmax Rem I nst (15)

Summarizing, the Empty Semi Trucks antipattern occurs
when the following composed predicate is true:

∃swEx ∈ swE, S ∈ S | (13) ∧ ((14) ∨ (15))

where swE represents theSoftwareEntityInstances,
and S represents the Services in the software system. Each
(swEx , S) instance satisfying the predicate must be pointed
out to the designer for a deeper analysis, because it represents
an Empty Semi Trucks antipattern.

4.2 Multiple-values performance antipatterns

In this section, we report one example of the Perfor-
mance Antipatterns that can be detected requiring the trend
(or evolution) of the performance indices during the time

(i.e. multiple values) to capture the performance problems
induced in the software system. In particular, we formal-
ize the Traffic Jam antipattern in the following, whereas the
remaining ones are reported in Appendix B.

4.2.1 Traffic Jam

Traffic Jam [34] has the following problem informal defi-
nition: “occurs when one problem causes a backlog of jobs
that produces wide variability in response time which persists
long after the problem has disappeared” (see Table 1).

We formalize this sentence with three basic predicates:
the B P1, B P2, and B P3 predicates whose elements belong
to the Static View.

B P1 There is at least one OperationInstance OpI
that has a quite stable value of its response time along differ-
ent observation time interval up to the kth one. Let us define
by FRT the function that returns the mean ResponseTime
of the OperationInstance OpI observed in the inter-
val t . We consider the average response time increase of the
operation in k − 1 consecutive time slots in which no peaks
are shown, which means that it is lower than a threshold
T hOpRtV ar :
∑

1≤t≤k |(FRT (OpI, t)−FRT (OpI, t−1))|
k − 1

< T hOpRtV ar

(16)

B P2 TheOperationInstanceOpI has an increasing
value of its response time along the kth observation interval.
We consider the average response time increase of the oper-
ation in the kth time slot in which a peak is shown, which
means that it is higher than a threshold T hOpRtV ar :

|FRT (OpI, k) − FRT (OpI, k − 1)| > T hOpRtV ar (17)

B P3 TheOperationInstance OpI has a quite stable
value of its response time after the kth observation interval,
since the wide variability persists long. Different observation
time slots are considered up to the nth observation interval.
We consider the average response time increase of the oper-
ation in n − k consecutive time slots in which no peaks are
shown:
∑

k≤t≤n |(FRT (OpI, t)−FRT (OpI, t−1))|
n − k

< T hOpRtV ar

(18)

Summarizing, the Traffic Jam antipattern occurs when the
following composed predicate is true:

∃OpI ∈ O | (16) ∧ (17) ∧ (18)

where O represents the set of all the OperationIn-
stances in the software system. Each OpI instance
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satisfying the predicate must be pointed out to the designer
for a deeper analysis, because it represents a Traffic Jam an-
tipattern.

5 Detection engine

To show the applicability of the defined predicates for the
detection of performance antipatterns, we have implemented
them as a java rule-engine application. The detection engine
uses the Java API for XML processing that is Document
Object Model (DOM) [1]; it is a cross-platform and language-
independent convention for representing and interacting with
objects in XML documents.

Such engine parses any XML document compliant with
our Schema and returns the detected antipatterns (that we call
antipattern instances) on the software architectural model.
Whenever an antipattern instance is detected, the correspond-
ing textual descriptions of the problem and the solution (see
Table 1) are automatically tailored to the case by replacing
roles with specific elements (see Sect. 6).

For example, the Concurrent Processing Systems antipat-
tern occurs when processing cannot make use of available
processors (see Table 1).

Our detection engine is meant to match the three condi-
tions under which the Concurrent Processing Systems anti-
pattern occurs (see Sect. 4.1.3). The first condition consists in
looking for a processing node that has the maximum queue
length larger or equal to a threshold; the second condition
consists in looking for an unbalanced cpu utilization, and
finally the third condition consists in looking for an unbal-
anced disk utilization.

The detection engine returns as output the specific model
elements that participate in the occurrence of the antipattern,
and the device (i.e. cpu or disk) that causes the unbalanced
utilization. For example, the output produced for our case
study is: processing cannot make use of the processors li-
braryNode and webServerNode, caused by unbalanced disk
utilization (see Sect. 6). Such output is a more structured
representation of the textual solution reported in Table 1.

6 Case study

In this section, we apply the antipatterns-based approach to
an Electronic Commerce System (ECS) case study. With
this example, we aim at demonstrating the validity of our
approach by illustrating how the predicates introduced in
Sect. 4 can be used to detect performance antipatterns.

Figure 6 customizes the approach of Fig. 1. The software
system is modeled with UML [3] and annotated with the
MARTE profile [4] that provides all the information we need

Fig. 6 ECS case study: customized software performance process

for reasoning on performance issues.6 The transformation
from the software architectural model to the performance
model is performed with PRIMA-UML, i.e. a methodol-
ogy that generates a Queueing Network (QN) model from
UML diagrams [15]. Once the QN model is derived, clas-
sical QN solution techniques based on well-known method-
ologies can be applied to solve the model, such as Mean
Value Analysis (MVA) or simulation [24]. The performance
model is analyzed to obtain the performance indices of inter-
est such as response time, utilization, throughput. The results
interpretation and feedback generation are implemented as
presented in Sect. 2 (see Fig. 2). We recall that it is com-
posed of three operational steps: (i) the modeling step where
performance antipatterns are defined as predicates modeling
specific properties of the UML models and MARTE pro-
file annotations (see Sect. 4); (ii) the extracting step where
antipatterns boundaries and XML representation are gener-
ated from the UML model and the performance indices (see
Sect. 6.3); (iii) the detection step where the java rule-engine
provides the critical elements in architectural models repre-
senting the source of performance problems as well as a set
of guidelines suggested to the designer that actually decide
the ones to apply (see Sect. 6.4).

6.1 (Annotated) software architectural model

Figure 7 shows an overview of the ECS software system. It is
a web-based system that manages business data: customers
browse catalogues and make selections of items that need to

6 MARTE (Modeling and Analysis of Real-Time and Embedded Sys-
tems) profile provides facilities to annotate UML models with infor-
mation required to perform performance analysis (e.g. workload to the
system, service demands, hardware characteristics, etc.).
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Fig. 7 UML Use Case
Diagram of ECS

be purchased; at the same time, suppliers can upload their cat-
alogues, change the prices and the availability of products etc.

The performance-critical services of the ECS are brow-
seCatalog and makePurchase, i.e. the ones highlighted by a
double circle in Fig. 7. The former can be performance criti-
cal because it is required by a large number of (registered and
not registered) customers, whereas the latter can be perfor-
mance critical because it requires several database accesses
that can drop the system performance.

Performance requirements have been defined on the
response time of these two ECS services under a workload
of 200 requests/second. The requirements are defined as fol-
lows: the browseCatalog service has to be offered in 1.2 s,
whereas the makePurchase one in 2 s.

In Fig. 8, we report an excerpt of the ECS anno-
tated software architectural model used in the analysis of
browseCatalog and makePurchase services. In particular, the
UML component diagram in Fig. 8a describes the software
components and their interconnections, whereas the UML
deployment diagram of Fig. 8b shows the deployment of the
software components on the hardware platforms. The deploy-
ment is annotated with the characteristics of the hardware
nodes to specify CPU attributes (speedFactor and schedPol-
icy) and network delay (blockT ).

6.2 Performance model

Figure 9 shows the Queueing Network model produced with
Prima-UML for the ECS system. Queueing Network models
have been widely applied as system performance models to
represent and analyze resource sharing systems [28,26,25,
43].

A QN model is a collection of interacting service centers
representing system resources and a set of jobs representing

the users sharing the resources [28]. Its informal represen-
tation is a direct graph whose nodes are service centers and
their connections are represented by the graph edges. Jobs
go through the graph’s edge set on the basis of the behav-
ior of customers’ service requests. Service centers may be
of two types: queueing and delay. Customers at a queueing
center compete for the use of the server, thus the time spent
by a customer at a queueing center has two components: the
time spent waiting and the time spent receiving service. Cus-
tomers at a delay center are allocated to their own server, so
there is no competition for service. Delay centers are useful in
any situation in which it is necessary to impose some known
average delay.

The performance analysis executed through the QN model
can be split into three steps: definition that include the def-
inition of service centers, their number, class of customers
and topology; parametrization, to define model parameters,
e.g. arrival processes, service rate and number of custom-
ers; evaluation, to obtain a quantitative description of the
modeled system, by computing a set of performance indices
such as resource utilization, system throughput and customer
response time.

The definition of the Queueing Network model for the
ECS case study (see Fig. 9) includes: (i) a set of queueing
centers (e.g. webServerNode, libraryNode, etc.) representing
the hardware resources of the system, a set of delay centers
(e.g. wan1, wan2, etc.) representing the network communica-
tion delays; (ii) two classes of jobs, i.e. browseCatalog (class
A, denoted with a star symbol in Fig. 9) invoked with a prob-
ability of 99 %, and makePurchase (class B, denoted with a
bullet point in Fig. 9) is invoked with a probability of 1 %.

The parametrization of the Queueing Network model for
the ECS case study is extracted by Prima-UML from the
UML models of the ECS and for convenience collected in
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(b)

(a)

Fig. 8 ECS (Annotated) Software Architectural Model

Table 2 where the first column contains the service centers
and the second column shows their corresponding service
rates for each class of job (i.e. class A and class B).

The evaluation of the Queueing Network model for the
ECS case study is collected in Table 3 that reports the per-

formance-critical services (first column), their response time
requirements (second column), and the corresponding value
obtained by the prediction analysis (third column).

As it can be noticed, both services have a response
time that does not fulfill the required ones: (i) the browse
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Fig. 9 ECS—Queueing Network model

Table 2 Input parameters for the Queueing Network model in the ECS
system

Service center Input parameters
ECS

class A (ms) class B (ms)

lan 44 44

wan 208 208

webServer Node 2 4

librar yNode 7 16

control Node 3 3

db_cpu 15 30

db_disk 30 60

Table 3 Response time requirements for the ECS software architec-
tural model

Requirement Required value (s) Predicted value
ECS (s)

RT(browseCatalog) 1.2 1.5

RT(makePurchase) 2 2.77

Catalog service has been predicted of 1.5 s and the require-
ment is 1.2 s; (ii) the makePurchase has been predicted
of 2.77 s and the requirement is 2 s. Hence, we apply our
approach to detect performance antipatterns.

6.3 Extract step

As first step, the approach joins the Software Architectural
Model and the Performance Indices (see Fig. 2) in an XML
representation7 of the ECS case study.

7 The XML representation of the ECS can be viewed in http://www.di.
univaq.it/catia.trubiani/phDthesis/ECS.xml.

As said in Sect. 4, basic predicates contain boundaries that
need to be actualized on each specific architectural model.

In our e-commerce system the numerical values are
obtained by means of heuristics defined in the following.
The Blob antipattern (Sect. 4.1.2) requires four boundaries:
T hmaxConnect

Definition: it specifies the bound for the number of the
components’ usage dependencies;

Heuristics: it has been calculated as the average number
of usage dependencies among all the components instances
of the software architectural model.
T hmax Msgs

Definition: it delimits the number of messages sent by a
component;

Heuristics: it has been calculated as the average number
of messages sent by all the components in a certain service.
T hmax HwUtil

Definition: it specifies the maximum utilization value for
execution hosts.

Heuristics: it has been calculated as the average utiliza-
tion among all the execution hosts (see Appendix C, with
ε = 0.25).
T hmax NetUtil

Definition: it specifies the maximum utilization value for
communication hosts.

Heuristics: it has been calculated as the average utiliza-
tion among all the communication hosts (see Appendix C,
with ε = 0.25).

Note that if architectural constraints are explicitly stated in
the requirements (e.g. the average utilization of the hardware
machines must not be higher than 0.7), then such require-
ments can be used to replace the boundaries values (e.g.
T hmax HwUtil and T hmax HwUtil should be both set to 0.7).

The Concurrent Processing Systems antipattern
(Sect. 4.1.3) requires five boundaries:
T hmax Queue

Definition: it defines the bound for the number of requests
incoming to the node;

Heuristics: it has been calculated as the average number of
the queue size among all the nodes’ instances of the software
architectural model.
T hmaxCpuUtil , T hminCpuUtil

Definition: they are used to specify, respectively, the upper
and the lower bound of the processor utilization.

Heuristics: they have been calculated as the average utili-
zation among all the processors (see Appendix C, with ε =
0.25).
T hmax DiskUtil , T hminDiskUtil

Definition: they are used to specify, respectively, the upper
and the lower bound of the disk utilization.

Heuristics: they have been calculated as the average utili-
zation among all the disks (see Appendix C, with ε = 0.25).

123

http://www.di.univaq.it/catia.trubiani/{phDthesis}/ECS.xml.
http://www.di.univaq.it/catia.trubiani/{phDthesis}/ECS.xml.


www.manaraa.com

406 V. Cortellessa et al.

The Empty Semi Trucks antipattern (Sect. 4.1.4) requires
three boundaries:
T hrem Msgs

Definition: it delimits the number of remote messages sent
by a component.

Heuristics: it has been calculated as the average number
of remote messages sent by all the components in a certain
service.
T hrem I nst

Definition: it specifies the bound for the number of the
remote communicating instances;

Heuristics: it has been calculated as the average number
of communicating instances among all the components of
the software architectural model.
T hminNetUtil

Definition: it represents the lower bound for the network
link utilization;

Heuristics: it has been calculated as the average utiliza-
tion of all the network link instances (see Appendix C, with
ε = 0.25).

The Traffic Jam antipattern (Sect. 4.2.1) requires one
boundary:
T hOpRtV ar

Definition: it delimits the variability in response times of
operations.

Heuristics: it has been calculated as the average slope of
the response time observed in consecutive time slots for a
certain operation.

Similar estimates must be done for all antipatterns. We
recall that Appendix C reports all the thresholds we need to
evaluate antipatterns boundaries. In particular, bindings for
their numerical values are discussed.

Table 4 reports the binding of the performance antip-
atterns boundaries for the ECS system. Such values allow

Table 4 ECS- performance boundaries binding

Antipattern Parameter Value

Blob T hmaxConnect 4

T hmax Msgs 18

T hmax HwUtil 0.75

T hmax NetUtil 0.85

CPS T hmax Queue 40

T hmaxCpuUtil 0.8

T hmax DiskUtil 0.7

T hminCpuUtil 0.3

T hminDiskUtil 0.4

EST T hremMsgs 12

T hrem I nst 5

T hminNetUtil 0.35

TJ T hOpRtV ar 400

… … …

to enrich the basic predicates with the performance bound-
aries (explained in Sect. 2), thus to proceed with the actual
detection.

6.4 Detect step

The detection of antipatterns is performed by running the
detection engine on the XML representation of the ECS soft-
ware architectural model. The java rule-engine reports the
presence of three performance antipatterns: Blob, Concurrent
Processing Systems (CPS), and Empty Semi Trucks (EST),
and the relative solution guidelines are reported in Table 5.

The Blob antipattern is originated by (lc1, bl1, browse-
Catalog) instances.

In Fig. 10, we illustrate an excerpt of the ECS software
architectural model where we highlight, in the shaded boxes,
the zones that evidence the Blob antipattern occurrence.
Such antipattern is detected in the ECS software architec-
tural model since there is the instance lc1 of the component
libraryController such that (see Table 4 and Fig. 10): (a) it
has more than 4 usage dependencies towards the instance
bl1 of the component bookLibrary; (b) it sends more than
18 messages (not shown in Fig. 10 for sake of space); (c)
the component instances (i.e. lc1 and bl1) are deployed on
different nodes, and the LAN communication host has an
utilization (i.e. 0.92), higher than the threshold value (0.85).

The java rule-engine application suggests the following
refactoring action: Refactor the design to keep related data
and behavior together: delegate some work fromlc1 tobl1
(see Table 5).

The CPS antipattern is originated by (libraryNode, web-
ServerNode) instances.

In Fig. 11 we illustrate an excerpt of the ECS software
architectural model where we highlight, in the shaded boxes,
the zones that evidence the CPS antipattern occurrence. Such
antipattern is detected in the ECS software architectural
model since there are two nodes, i.e. libraryNode and web-
ServerNode that (see Table 4 and Fig. 11) are not used in
a well-balanced way. It means that: (i) the queue size of
libraryNode (i.e. 50) is higher than the threshold value of
40; (ii) an unbalanced load among CPUs does not occur,
because the maximum utilization of CPUs in libraryNode
(i.e. 0.82) is higher than 0.8 threshold value, but the max-
imum utilization of CPUs in webServerNode (i.e. 0.42) is
not lower than 0.3 threshold value; (iii) an unbalanced load
among disks occurs, in fact the maximum utilization of disks
in libraryNode (i.e. 0.78) is higher than the threshold value of
0.7, and the maximum utilization of disks in webServerNode
(i.e. 0.35) is lower than the threshold value of 0.4.

The java rule-engine application suggests the following
refactoring action: Restructure software or change schedul-
ing algorithms between processors libraryNode and webSer-
verNode (see Table 5).
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Table 5 ECS Performance Antipatterns: problem and solution

Antipattern Problem Solution

Blob The libraryController instance lc1 performs most of
the work, it generates excessive message traffic

Refactor the design to keep related data and behavior together:
delegate some work from lc1 to the bookLibrary instance bl1

Concurrent
processing
systems

Processing cannot make use of the processors
libraryNode and webServerNode caused by
unbalanced disk utilization

Restructure software or change scheduling algorithms between
processors libraryNode and webServerNode

Empty semi trucks An excessive number of requests is performed by the
userController instance uc1 to perform the makePurchase
service

Combine items into messages (for the communication that uc1
originates) to make better use of available bandwidth

Fig. 10 ECS—the Blob
antipattern occurrence

The EST antipattern is originated by (uc1, makePurchase)
instances.

In Fig. 12 we illustrate an excerpt of the ECS software
architectural model where we highlight, in the shaded boxes,
the zones that evidence the EST antipattern occurrence. Such
antipattern occurs since there is the instance uc1 of the
userController component such that (see Table 4 and
Fig. 12): (a) it sends more than 12 remote messages (not
shown in Fig. 12 for sake of space); (b) the component
instances are deployed on different nodes, and the commu-
nication host has a utilization (i.e. 0.25 in the wan instance),
lower than 0.35 threshold value; (c) it has more than 5 remote
instances (ce1, …, ce8) of the catalogEngine component with
which it communicates.

The java rule-engine application suggests the following
refactoring action: Combine items into messages (for the
communication that uc1 originates) to make better use of
available bandwidth (see Table 5).

6.5 Model refactoring

According to the antipattern solutions proposed in Table 5,
we refactor the model and we obtain three new software
architectural models, named EC S � {blob}, EC S � {cps},
and EC S � {est}, where the Blob, the CPS and the EST
antipatterns have been solved, respectively (see Fig. 13).

In particular, the Blob antipattern is solved by modi-
fying the inner behavior of the libraryController software
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Fig. 11 ECS—the Concurrent
Processing Systems antipattern
occurrence

component, thus it is not anymore the intermediate compo-
nent for services provided by the bookLibrary and movieLi-
brary components.

The CPS antipattern is solved by re-deploying the soft-
ware component userController from libraryNode to web-
ServerNode.

The EST antipattern is solved by modifying the inner
behavior of the userController software component that has
less computation in the communication with the catalogEn-
gine component in the makePurchase service.

EC S � {blob}, EC S � {cps}, and EC S � {est} systems
have been analyzed. Input parameters are reported in Table 6
where shaded entries represent the changes induced from
the solution of the corresponding antipatterns. For example,
in the column EC S � {cps}, we can notice that the queue-
ing centers webServerNode and libraryNode have different
input values, since the redeployment of the software compo-
nent userController implies to move the load in the involved
resources: (i) in case of the job class A, the load is esti-
mated of 2 ms and it is moved from libraryNode (the initial
value of 2 ms in EC S is increased of 2 ms, thus to become
4 ms in EC S � {cps}) to webServerNode (the initial value
of 7 ms in EC S is decreased of 2 ms, thus to become 5 ms in
EC S � {cps}); (ii) in case of the job class B, the load is esti-
mated of 8 ms and it is moved from libraryNode (the initial
value of 4 ms in EC S is increased of 8 ms, thus to become
12 ms in EC S � {cps}) to webServerNode (the initial value
of 16 ms in EC S is decreased of 8 ms, thus to become 8 ms
in EC S � {cps}).

Table 7 summarizes the performance results obtained by
solving the QN models of the new ECS systems, i.e. the

systems where design alternatives (as suggested by the an-
tipattern solutions) are applied. Under a workload of 200
requests/second, the response time of the browseCatalog ser-
vice is 1.14, 1.15, and 1.5 s for EC S �{blob}, EC S �{cps},
and EC S � {est}, respectively. The response time of the
makePurchase service is 2.18, 1.6, and 2.24 s for EC S �

{blob}, EC S � {cps}, and EC S � {est}, respectively.
The Blob antipattern solution has satisfied the first require-

ment, but not the second one. The solution of the Concur-
rent Processing System leads to satisfy both requirements.
Finally, the Empty Semi Trucks solution was useless for the
first requirement as no improvement was carried out, but it
was quite beneficial for the second one, even if both of them
were not fulfilled.

Hence, the experimental results highlight that each anti-
pattern has a different impact on performance indices, and
in our case study we found that the Concurrent Processing
System was the most beneficial one, since all performance
requirements were fulfilled after removing it.

6.6 Extending the system modeling

The application of the antipatterns-based approach is not
limited (in principle) along the software lifecycle, but it is
obvious that an early usage is subject to limited information
because the system knowledge improves while the devel-
opment process progresses. Both the architectural and the
performance models can be further detailed with additional
knowledge.

The aim of this section is to demonstrate that as far as the
system knowledge advances the antipatterns-based approach
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Fig. 12 ECS—the Empty Semi Trucks antipattern occurrence

can suggest suitable architectural alternatives for the system
under development. We discuss how the modeling of an addi-
tional service in the ECS case study (i.e. uploadCatalog per-
formed by the suppliers of the system, see Fig. 14), leads the
process to provide an extended evaluation of the software
system.

Figure 15 shows an excerpt of the annotated ECS soft-
ware architectural model used in the following analysis. In
particular, Fig. 15a and 15b, respectively, reports the UML
component and deployment diagrams where dashed boxes
contain the architectural elements we added for modeling
the uploadCatalog service. Note that some model elements
are already shown in Fig. 8, since some of them (e.g. catalo-

Fig. 13 ECS model refactoring: reiteration of the software perfor-
mance process

gEngine, database) are used by both customer and supplier
users.

Figure 16 shows the Queueing Network model produced
with Prima-UML for the ECS system, and it is extended with
the uploadCatalog service. The definition of this Queueing
Network model includes: (i) the introduction of queueing
centers (e.g. supplierWebServerNode) representing the addi-
tional hardware resources of the system; (ii) the introduction
of one class of jobs, i.e. uploadCatalog (class C, denoted
with a square symbol in Fig. 16).

The parametrization of the Queueing Network model for
the ECS case study is extracted by Prima-UML from the
UML models of the ECS and, for convenience, summarized
in Table 8 where the first column contains the service centers
and the second column shows their corresponding service
rates for the classes of job.

Note that the Queueing Network model of Fig. 16 is a
mixed Queueing Network [26], in fact there are multiple
types of job classes: the network is open for jobs of classC
and closed for class A and class B. The model of Fig. 16
has been solved by simulation with the Java Modelling Tools
(JMT) [10].

Both the architectural and the performance models include
additional knowledge that has been inserted in our XML
representation, and the detection process has been newly
performed. The java rule-engine reports the presence of a
new performance antipattern, i.e. the Traffic Jam, as reported
in Table 9.

The Traffic Jam antipattern is originated by the upload-
Catalog instance.
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Table 6 Input parameters for
the Queueing Network model
across different software
architectural models

Service Center Input parameters
EC S � {cps} EC S � {est} EC S � {blob}
class A (ms) class B (ms) class A (ms) class B (ms) class A (ms) class B (ms)

lan 44 44 44 44 44 44

wan 208 208 208 208 208 208

webServer Node 4 12 2 4 2 4

librar yNode 5 8 7 12 5 14

control Node 3 3 3 3 3 3

db_cpu 15 30 15 30 15 30

db_disk 30 60 30 60 30 60

Table 7 Response time
requirements for
EC S � {blob}, EC S � {cps},
and EC S � {est} software
architectural models

Requirement Required value (s) Predicted value
EC S � {blob} (s) EC S � {cps} (s) EC S � {est} (s)

RT(browseCatalog) 1.2 1.14 1.15 1.5

RT(makePurchase) 2 2.18 1.6 2.24

Fig. 14 UML Use Case
Diagram of ECS: extending the
modeling to the uploadCatalog
service

Figure 17 illustrates an excerpt of the response time
(observed over simulation time) of the uploadCatalog ser-
vice, where we highlight the Traffic Jam antipattern occur-
rence. On the x axis, the simulation time is reported, and
on the y axis the response time of the service is depicted.
Single points in the graph (denoted with the × symbol) rep-
resent the observed values. For example, the point (1184.93,
184.93) means that the completion a job of classC (i.e.
the uploadCatalog service) has been observed at 1184.93
simulation instant and the response time measured for it is
184.93 ms. Figure 17 additionally shows the trend of the
average response time for the uploadCatalog service. We

obtained this trend by dividing the simulation time in inter-
vals of 1000 ms, and for each interval we calculate the aver-
age response time of the observed completions. Hence we
draw the average trend by considering the calculated aver-
age response time as constant in the referring interval, thus
to obtain the piecewise linear function, i.e. the solid line
of Figure 17. For example, in the simulation time interval
[5000, 6000] several jobs of classC have been completed
and their average response time is 450.16 ms.

By observing the average trend, it is worth to notice that
several intervals show the occurrence of the Traffic Jam
antipattern, i.e. [0, 5000], [4000, 16000], [12000, 20000],
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Fig. 15 ECS (Annotated)
Software Architectural Model,
with the modeling of the
uploadCatalog service

(a)

(b)

[17000, 26000], [22000, 30000]. For example, in the inter-
val [4000, 16000] we can notice that the operation upload-
Catalog shows the following features: (a) it has a quite
stable value of its response time along different observa-
tion time slots up to 11000 ms of simulation time; (b) it

has an increasing value of its response time in the intervals
[10000, 11000] and [11000, 12000], in fact a peak is shown:
RT(uploadCatalog, 10000) = 461.84 ms, and RT(upload-
Catalog, 11000) = 951.21 ms by giving raise to a gap of
489.37 ms that is larger than the T hOpRtV ar threshold value
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Fig. 16 ECS—Queueing Network model, with the modeling of the
uploadCatalog service

Table 8 Input parameters for the Queueing Network model in the ECS
system

Service center Input parameters
ECS

class A (ms) class B (ms) classC (ms)

lan 44 44 44

supplier W ebServer Node − − 13

control Node 3 3 3

db_cpu 15 30 40

db_disk 30 60 80

set to 400 ms (see Table 4); (c) it has a quite stable value of
its response time after 11000 ms of simulation time, in fact
RT(uploadCatalog, 12000) = 306.44 ms.

The java rule-engine application suggests the following
refactoring action: Provide sufficient processing power to
handle the worst-case load for the uploadCatalog operation
instance (see Table 9).

According to the antipattern solution proposed in Table 9,
we refactor the ECS model and we obtain a new software
architectural model, named EC S � {t j}, where the Traffic

Jam antipattern has been solved. In particular, it is solved
by substituting some hardware devices (i.e. supplierWeb-
ServerNode, controlNode, and databaseNode) with faster
ones, thus to increase their processing power. Figure 18 illus-
trates the performance improvement we experimented for the
response time of the uploadCatalog service, i.e. for both the
single observed values and the average trend in the different
time slots. The maximum slope is observed from the inter-
vals [14000, 15000] and [15000, 16000] of simulation time
where there is a difference of 317.20 ms in the response time
of the uploadCatalog service, i.e. lower than the T hOpRtV ar

threshold value (see Table 4).

7 Discussion

The formalization of antipatterns proposed in this paper is
the result of a long process that has produced several for-
mulations before the current one. To study how to formalize
them, we have first looked for (simple and complex) exam-
ples in literature [9,36]. We have compared the definitions
from Smith [37] and the retrieved examples. Then, we have
identified the system elements encountered in such study and
we have organized them in the XML Schema described in
Sect. 4 and fully reported in Appendix A. Thereafter, we have
interpreted the antipatterns to provide a notation-independent
and a machine-processable definition of them. To reach this
goal, we have focused on a first-order logic representation
that provides the necessary expressiveness to describe the
conditions under which an antipattern occurs.

However, although the used notation is very formal
and it can be used to automatize the antipattern detec-
tion, we must point out that this formalization reflects
our interpretation of the informal textual definition of the
considered antipatterns. Indeed several other feasible inter-
pretations of antipatterns can be provided. This unavoid-
able gap is an open issue in this domain, and certainly
requires a wider investigation to consolidate the antipatterns’
definition.

Moreover, the formal definition of antipatterns is subject
to another degree of uncertainty due to the presence of a
certain number of thresholds. They introduce a degree of
freedom in the antipattern detection. Such thresholds (i.e.
the Antipatterns Boundaries of Fig. 2) must be bound to

Table 9 ECS Performance Antipatterns: problem and solution

Antipattern Problem Solution
… … …

Traffic Jam The uploadCatalog operation instance causes a
backlog of jobs that produces wide variability in
response time

Provide sufficient processing power to handle the
worst-case load for the uploadCatalog operation
instance
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Fig. 17 ECS—the Traffic Jam antipattern occurrence
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Fig. 18 EC S � {t j}—performance improvement due to the Traffic Jam antipattern solution

concrete numerical values (e.g. hardware entities whose uti-
lization is higher than 0.8 are considered critical ones),
and providing guidelines to assign those values is again an
open issue. For example, one can either define some heu-
ristics for them (as we did in this paper and reported in
Tables in Appendix C), or set them directly on the basis
of her experience, or they can be extracted from the sys-
tem requirements. However, threshold values can be refined
as far as more trustable sources of information are avail-
able. Additionally, the bounding of some thresholds is intrin-
sically more difficult than others. For example, both the
Ramp and the Traffic Jam antipatterns refer to thresholds
representing the maximum feasible slope of the response
time (or the throughput) observed in consecutive time slots,
hence these values are not easy to assign. Adaptive heuris-
tics can be introduced to iteratively obtain more accurate

threshold boundaries. For example, in case of the Ramp
and the Traffic Jam antipatterns, such heuristics may exploit
historical data (obtained by previous performance anal-
yses), thus to accurately tune the slope used as bound-
ary for the increase of response time and the decrease of
throughput.

Since we cannot avoid thresholds in antipattern defini-
tions, the detection accuracy is as good as the number and the
accuracy of thresholds an antipattern requires. In this direc-
tion, we are working on defining a metrics that quantifies the
degree of uncertainty of the approach. Such metrics is con-
ceived as a function of the number and the type of thresholds
a formalization requires. This metrics can be used to limit
the detection of false positive/negative antipattern instances.
Moreover, some fuzziness can be introduced for the evalua-
tion of threshold values [39]. This might be useful to make
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basic predicates more flexible, and to detect the performance
flaws with diverse accuracy levels.

Finally, the process followed in the system element
identification and classification brought us to specify per-
formance antipatterns at the software architecture level inde-
pendently from the notation used to model the (software)
system and from the specific performance model and anal-
ysis techniques used to evaluate the performance indices.
Hence, with appropriate techniques for exporting the sys-
tem information, the approach has the potential to be applied
to a wide range of software development and performance
analysis methodologies.

8 Related work

The term Antipattern appeared for the first time in [9] in
contrast to the trend of focus on positive and constructive
solutions. Differently from patterns, antipatterns look at the
negative features of a software system and describe com-
monly occurring solutions to problems that generate negative
consequences.

Antipatterns have been applied in different domains. For
example, in [42] data-flow antipatterns help to discover errors
in workflows and are formalized through the CTL* temporal
logic. As another example, in [8] antipatterns help to dis-
cover multi threading problems of java applications and are
specified through the LTL temporal logic.

Performance Antipatterns, as the same name suggests,
deal with performance issues of the software systems. They
have been previously documented and discussed in differ-
ent works: technology-independent performance antipatterns
have been defined in [37] and they represent the main ref-
erences in our work; technology-specific antipatterns have
been specified in [16,41].

Enterprise technologies and EJB antipatterns are analyzed
in [31]: antipatterns are represented as a set of rules loaded
into the JESS [2] rule engine. The monitoring of the soft-
ware application leads to reconstruct its run-time design and
to obtain JESS facts. The matching between pre-defined rules
and application facts is performed to carry out the detection
of antipatterns.

Another recent work on the software performance diag-
nosis and improvements is proposed in [48]. Rules able to
identify patterns of interaction between resources are defined,
and again specified as JESS rules. Performance problems are
identified before the implementation of the software system,
even if they are based only on bottlenecks (e.g. the “One-
Lane Bridge” antipattern) and long paths. Layered resource
architectures are considered and the performance analysis is
conducted with Layered Queueing Network (LQN) models.
Such approach applies only to LQN models, hence its por-
tability to other notations is yet to be proven and it may be

quite complex. Our intent is instead to address a much wider
set of modeling notations. This is the reason why we propose
to represent performance antipatterns with basic constructs
such as logical predicates.

Antipattern representation is a more recent research topic,
whereas there has already been a significant effort in the area
of representing software design patterns.

In [40], the authors propose a pattern specification lan-
guage that is aimed to specify static and dynamic features
of design patterns. Each pattern is analyzed from two com-
plementary views: the structural and the behavioral views.
In the context of performance antipatterns, we need an addi-
tional view, as the deployment view is necessary to represent
platform properties.

In [27] design patterns are represented by logic predi-
cates through which it is possible to identify roles and subse-
quently candidates for the patterns. Starting from the UML
class diagram of the design pattern, it is possible to iden-
tify the role elements of the pattern and their relationship:
each role is translated into a logical predicate, and finally the
design pattern is a logical predicate that manages the inter-
play of all the different roles involved in its specification.
Note that another benefit of using logical predicates is that
they can be further refined on the basis of probabilistic model
checking techniques, as Grunske experimented in [21].

In [18], a set of modeling patterns are used to explore the
design space of soft real-time systems. Patterns are proposed
as parametric templates that can be applied by setting appro-
priate values according to different deployments. A modeling
language formalizes patterns representing design solutions
that may have a different impact on the system performance
intended as the amount of fulfilled real-time deadlines.

In [17], a metamodeling approach to pattern specifica-
tion and detection has been introduced. In the context of the
OMG’s 4-layer metamodeling architecture, the authors pro-
pose a pattern language (i.e. Epattern, at the M3 level) to
specify patterns in any MOF-compliant modeling language
at the M2 layer. The Epattern language defines a pattern as a
metaclass, which can then be inherited to create pattern hier-
archies or composed to create larger patterns. A pattern is
specified graphically using a UML composite structure-like
diagram. No complete detection algorithm from the pattern
specification is provided.

The specification of UML-based patterns is addressed in
[19] where a pattern specification technique is aimed at defin-
ing design patterns as models in terms of UML metamodel
concepts. A pattern model describes the participants of a pat-
tern and the relations between them in a graphic notation by
means of roles, i.e. the properties that a UML model element
must have to match the corresponding pattern occurrence. In
other words, a pattern is viewed as a meta-model (with struc-
tural and behavioral features) thus each instance of the pattern
is a model in UML. Moreover, in [19] the pattern detection,
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consisting on binding pattern models with system models, is
not automated. Additionally, in the context of performance
antipatterns, static and dynamic properties are not enough for
representing performance issues. Performance annotations
as well as the deployment reporting platform properties are
necessary to target the performance evaluation of systems.

Search-based approaches [22] have been introduced to
explore the problem space by examining options to deal with
performance flaws. In [49], an approach to explore the design
space and to find optimal deployment and scheduling prior-
ities for tasks in a class of distributed real-time systems has
been presented. However, its scope is restricted to improve
the priorities of tasks competing for a processor, and the only
refactoring action is aimed at changing the allocation of tasks
to processors. In [29] meta-heuristic search techniques have
been used for improving quality attributes of component-
based software systems. This approach is quite time-con-
suming if the search is not guided by proper factors, such as
the violation of performance requirements. A combination
of meta-heuristic techniques and antipattern detection would
be interesting to experiment to reduce the search space.

9 Conclusions

This work is a contribution to the backward path from per-
formance analysis results to architectural feedback. Specifi-
cally, we have introduced an approach based on performance
antipatterns that helps to identify the performance critical
elements of software under development.

Performance antipatterns have been always considered
as very useful examples of bad design practices, but little
effort has been spent to formalize this knowledge and make
it usable through automated instruments. The results of this
paper show that this is a viable direction, thus more effort
shall be dedicated to the antipattern manipulation to com-
pletely automate the backward path.

As the reader can realize, several open issues should be
addressed in performance antipattern specification. However,
the presented approach is the first thorough one at the best of
our knowledge, so it represents a starting point for the imple-
mentation of the result interpretation and feedback genera-
tion step at the software architecture level.

The approach that we have introduced here for the anti-
pattern representation is notation-independent, so it can be
mapped onto various modeling languages through model
transformation techniques. In fact, we are working in this
direction to introduce a metamodeling approach to the anti-
pattern definition and to use model-driven engineering tech-
niques to detect and solve performance antipatterns.

Since an antipattern is made of a problem description and
a solution description, besides the open issues pointed out
in Sect. 7, we also are working on the antipattern solution.

In particular, our work is inspired by existing languages for
software refactoring based on patterns to define a refactoring
representation for performance antipatterns.

A more complex problem to be faced for antipattern solu-
tion occurs whenever several antipatterns are detected in a
model and heuristic approaches have to be applied to decide
which antipatterns to solve among the found ones. Such prob-
lem has been partially tackled in [14], but many interesting
issues have still to be faced, such as the simultaneous solution
of multiple antipatterns.

This solution process can be quite complex, and the an-
tipattern formalization is only the first step. For example,
metrics can be introduced to quantify the role of views in
the definition of an antipattern. In fact, once defined, an
antipattern must be searched, often with incomplete informa-
tion available to analysts. Therefore, the searching process
is basically driven from heuristics, and metrics are crucial to
effectively drive such process.

Finally, some critical pending issues have to be faced to
automate the solution process. The solution of antipatterns
in fact generates three main categories of problems: (i) the
convergence problem, i.e. the solution of one or more antip-
atterns may introduce new antipatterns; (ii) the requirement
problem, i.e. one or more antipatterns may not be solvable
due to pre-existing (functional or non-functional) require-
ments; (iii) the coherency problem, i.e. the solution of a
certain number of antipatterns may not be unambiguously
applied due to incoherencies among their solutions.

Acknowledgments We would like to thank the anonymous review-
ers for their useful comments that have helped us to improve the paper
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(ERC-240555).

Appendix A: Identifying the foundational elements
of antipatterns

In this appendix, we provide a structured description of the
architectural model elements that occur in the definitions
of antipatterns [37] (such as software entity, hardware utili-
zation, operation throughput, etc.), which is meant to be the
basis for a definition of antipatterns as logical predicates (see
Sect. 4).

Since an (annotated) software architectural model con-
tains details that are not relevant for the antipattern defi-
nition, as a first step we have filtered the concepts we need
for the antipatterns representation. These concepts have been
organized in an XML Schema, i.e. aimed at detecting perfor-
mance issues, not representing software systems. The choice
of XML [47] as representation language comes from its pri-
mary nature of interchange format supported by many tools
that makes it one of the most straightforward means to define
generic structured data.
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Fig. 19 An excerpt of the XML Schema

Software architectural model elements are organized in
views. We consider three different views representing three
sources of information: the Static View that captures the mod-
ules (e.g. classes, components, etc.) involved in the software
system and the relationships among them; the Dynamic View
that represents the interactions that occur between the mod-
ules to provide the system functionalities; and finally the
Deployment View that describes the mapping of the modules
onto platform sites. This organization stems from the Three-
View Model that was introduced in [45] for performance
engineering of software systems.

Overlaps among views can occur. For example, the ele-
ments interacting in the dynamics of a system are also part of
the static and the deployment views. In particular, we adopt
the term Service to represent the high-level functionalities of
the software system that are meant to include all the inter-
acting elements among the three views. To avoid redundancy
and consistency problems, concepts shared by multiple views

are defined once in a view, and simply referred in the other
ones (through XML RFID).

The XML Schema we propose for performance antipat-
terns8 is synthetically shown in Fig. 19: a System has an
identifier (systemID) and it is composed of a set of Mode-
lElements belonging to the three different Views, and of the
set of Functionalities it provides. The Static View groups the
elements needed to specify structural aspects of the software
system; the Dynamic View deals with the behavior of the sys-
tem; and finally the Deployment View captures the elements
of the deployment configuration.

A Service has an identifier (serviceID) and it can be asso-
ciated with a Workload, i.e. Open (specified by the interAr-
rivalTime, e.g. a new request arrives each 0.5 s) or Closed
(specified by the population and the thinkTime, e.g. there

8 The XML Schema can be downloaded in http://www.di.univaq.it/
catia.trubiani/phDthesis/PA_xmlSchema.xsd.
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is a population of 25 requests entering the system, executing
their operational profile, and then re-entering the system after
a think time of 2 min). Note that the measurement unit (e.g.
micro seconds, seconds, minutes) for the workload is spec-
ified in the metricUnit attribute. In fact, the metricUnit ele-
ment uses an enumeration aimed at specifying a set of valid
values for that element, i.e. ms (referring to micro seconds),
s (referring to seconds), min (referring to minutes), and other
(referring to any other metric unit customized by the user).

Each service contains static, dynamic and deployment ele-
ments; the reference to the architectural model elements is
obtained by specifying that a service is ProvidedBy a set of
Behaviors whose id reference (the behaviorID attribute, see
Fig. 24a) is referred in the attribute behaviorRole. It will be
the behavior (belonging to the Dynamic View) to contain all
the other references among the model elements belonging to
the other views (i.e. Static and Deployment).

A.1 Static view

The Static View contains elements to describe the static
aspects of the system, it is composed of a set of
SoftwareEntity and Relationship model elements.

The SoftwareEntity element has an identifier (softwareEn-
tityID), a boolean value to specify if it is a database (isDB),
an integer value to specify its pool size (capacity). A soft-
ware entity contains a set of SoftwareEntityInstance elements
specified by their identifiers (softwareEntityInstanceID), and
a set of Operation(s).

A Relationship has an identifier (relationshipID), its mul-
tiplicity, and it contains a Client and a Supplier. Both these
elements have an attribute, i.e. clientRole and supplierRole,
respectively, that refers to a software entity instance iden-
tifier (softwareEntityInstanceID) previously declared. From
a performance perspective, the only interesting relationship
between two software entities is the usage relationship. Thus,
the XML Schema does not contains elements for all relation-
ships between two software entities (e.g. association, aggre-
gation, etc.), but it flattens any of them in a client/supplier
one. For example, in the aggregation relationship, a software
entity aggregates one or more instances of another software
entity to use their methods. In our Schema, this is represented
as a Relationship where the first software entity instance has
a clientRole and the aggregated ones has a supplierRole. In
fact, we recall that the XML Schema we propose is not meant
to represent software systems, but only to organize all the
concepts providing useful information for the performance
antipatterns.

The details of the Operation element are shown in
Fig. 20b. An Operation has an identifier (operationID), and
the probability of its occurrence. Besides, an operation has a
StructuredResourceDemand composed of multiple BasicRe-
sourceDemand(s). A basic resource demand is composed of

the resource type (e.g. cpu work units, database accesses, and
network messages), and its value (e.g. number of cpu instruc-
tions, number of DB accesses, and number of messages sent
over the network). Note that the resource type element uses
an enumeration aimed at specifying a set of valid values for
that element, i.e. computation (referring to cpu work units),
storage (referring to database accesses), bandwidth (refer-
ring to network messages), and other (referring to any other
resource type customized by the user).

An operation contains a set of OperationInstances spec-
ified with their identifiers (operationInstanceID), and some
performance metrics are associated with each instance,
namely PerformanceMetrics. The metricUnit attribute
denotes the measurement unit adopted (e.g. micro seconds,
seconds, minutes), and they can be either Throughput or Re-
sponseTime. Multiple values can be specified for these two
latter indices, and they represent the results from the simula-
tion or the monitoring of the system over time. In fact, they
can be evaluated at a certain date and/or time (timestamp),
thus to capture the multiple-values antipatterns.

Figures 21, 22 and 23 show some examples of elements
belonging to the Static View of the XML Schema: the left
sides of these Figures give graphical representations of a
software architectural model, whereas the right sides report
excerpts of the XML files (compliant to the XML Schema)
representing the features of the software architectural model.

Figure 21 shows an example of the Relationship element.
There are two software entity instances, i.e. the webServer
w1 with a pool size of ten requests, and the database d1, and
they are related each other through many connections. The
Relationship involves the webServer in the clientRole and
the database in the supplierRole; the number of operations
required from the client to the supplier (i.e. getUserName,
getUserAddress, getUserPassport, getUserWorkInfo), that is
four, is stored in the multiplicity attribute of the Relationship
element.

Figure 22 shows an example of the StructuredResource-
Demand element. There is a Service (authorizeTransaction)
that is provided by means of three operations (i.e. validate-
User, validateTransaction, sendResult). The operation vali-
dateUser requires the following amount of resource demand:
1 computation unit, 2 storage units, and 0 bandwidth unit.
We recall that computation, storage, and bandwidth represent
the enumeration values for the basic resource demand type
element of the XML Schema. The Operation validateUser
that has two OperationInstances (i.e. v1 and v2) that will be
referred in Fig. 23.

Figure 23 shows an example of the PerformanceMetrics
element. The OperationInstances v1 and v2 are deployed
on different processing nodes, i.e. proc1 and proc2. Note
that performance metrics can be obtained by simulating or
monitoring the performance model or by solving it ana-
lytic or other ways. In the example that we propose in
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(b)

(a)

Fig. 20 XML schema—Static View
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Fig. 21 An example of the
Relationship element

Fig. 22 An example of the
StructuredResourceDemand
element

Fig. 23 An example of the
PerformanceMetrics element

Fig. 23, both solutions are applied: (i) the OperationInstance
v1 is evaluated by simulating the performance model, and
the simulation reveals that after the system is running for
10 s there are the following performance metrics: Through-

put = 100requests/s, ResponseTime = 1.8 s; whereas after
the system is running for 100 s there are the following per-
formance metrics: Throughput = 80 requests/s, Response-
Time = 2.1 s; (ii) the OperationInstance v2 is evaluated by
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solving the performance model in an analytic way, and the
analytic solution reveals that there are the following per-
formance metrics: Throughput = 40 requests/s, Response-
Time = 4.8 s. We recall that ms, s, and min represent the
enumeration values for the operation instance metricUnit ele-
ment of the XML Schema.

A.2 Dynamic view

The Dynamic View (Fig. 24a) is made of Behavior(s). Each
behavior has an identifier (behaviorID), and its execution
probability. A Behavior contains either a set of Message(s)
or an Operator.

As shown in Fig. 24a, an Operator can be either a behav-
ior Alternative with the probability it occurs or a Loop
with the number of iterations (no_of_iterations). An oper-
ator might contain Message(s) and optionally another nested
Operator.

As shown in Fig. 24b, a Message is described by the mul-
tiplicity of the communication pattern, the size and its size-
Unit (e.g. Kilobyte, Megabyte, Gigabyte), and the format
(e.g. xml) used in the communication. Note that the size-
Unit element uses an enumeration aimed at specifying a set
of valid values for that element, i.e. Kb (referring to Kilo-
byte), Mb (referring to Megabyte), Gb (referring to Giga-
byte), and other (referring to any other size unit customized
by the user). From a performance perspective, the size of mes-
sages is useful to detect antipatterns in message-based sys-
tems that require heavy communication overhead for sending
messages with a very small amount of information, whereas
the format of messages is useful when the sender of the mes-
sage translates it into an intermediate format, and then the
receiver parses and translates it in an internal format before
processing it. The translation and parsing of formats could
be time consuming, thus degrading the performance.

A message has a Sender identified by senderRole, a
Receiver identified by receiverRole, and they both refer to
a softwareEntityInstanceID playing such role. Additionally,
it is possible to specify if the message is Synchronous or
Other. We are not interested to asynchronous and reply mes-
sages, we flatten them in Other. Also in this case we can
notice that the XML Schema we propose it is not meant to
represent software systems, but to keep all the concepts pro-
viding useful information for the antipatterns. In fact, syn-
chronous messages are of particular interest for the One-Lane
Bridge antipattern, since it occurs when a set of processes
make a synchronous call to another process that is not multi-
threaded, hence only a few processes may continue to exe-
cute concurrently. Note that Other is intentionally added to
enrich the vocabulary of the XML Schema, and it can be
further detailed if new antipatterns are considered.

The Task determines the invocation of one operation, it
is characterized by an identifier (taskRole) that refers to

an operationInstanceID playing such role. Optionally there
may be an attribute to specify the semantic of the message
(i.e. IsCreateObjectAction or IsDestroyObjectAction) that
allows the detection of frequent and unnecessary creations
and destructions of objects belonging to the same software
entity instance.

Figure 25 shows an example of elements belonging to
the Dynamic View of the XML Schema: the left side of the
Figure gives a graphical representation of a software archi-
tectural model, whereas the right side reports an excerpt of
the XML file (compliant to the XML Schema) representing
the features of the software architectural model. In particu-
lar, Fig. 25 shows an example of the Behavior element. There
are two software entity instances (a1 and a2) exchanging the
user credentials, and the behavior is performed as follows.
The software entity instance a1 sends a synchronous message
(with a size of 0.5 kilobyte and xml format) to the software
entity instance a2 by invoking the execution of the operation
validateUser. Note that the taskRole attribute of Fig. 25 refers
to the operationInstanceID of Fig. 23.

A.3 Deployment view

The DeploymentView (see Fig. 26a) is made of a set of pro-
cessing nodes (ProcesNode), and optional NetworkLink(s)
that enable the communication between the nodes.

As shown in Fig. 26b, a processing node has an identifier
(procesNodeID), and it contains a set of DeployedInstance(s).
Each DeployedInstance has an identifier (deployedInstance-
Role) that refers to a softwareEntityInstanceID already
defined in the Static View.

A processing node additionally contains a set of hard-
ware entities (HardwareEntity). Each hardware entity has an
identifier (hardwareEntityID), the Utilization and the Queue-
Length values, and the type indicating whether it is a cpu or
a disk. In fact, the type element uses an enumeration aimed
at specifying a set of valid values for that element, i.e. cpu
(referring to cpu devices), disk (referring to disk devices), and
other (referring to any other type customized by the user).
From a performance perspective, the distinction between
cpu(s) and disk(s) is useful to point out the type of work
assigned to a processing node by checking their utilization
values (e.g. a database transaction uses more disk than cpu).

Specific performance metrics for a processing node are
also defined, i.e. ProcNodePerfMetrics, such as its Ser-
viceTime (e.g. the average processing time used to execute
requests incoming to the processing node is 2 s), and its
WaitingTime (e.g. the average waiting time for requests
incoming to the processing node is 5 s). The metricUnit attri-
bute denotes again the measurement unit adopted (e.g. micro
seconds, seconds, minutes).

From the performance perspective, some additional infor-
mation can be useful in this view. It may happens that while
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(a)

(b)

Fig. 24 XML schema—Dynamic View
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Fig. 25 An example of the
Behavior element

trying to run too many programs at the same time, this intro-
duces an extremely high paging rate, thus systems spend all
their time serving page faults rather than processing requests.
To represent such scenario, we introduce a set of param-
eters, Params, that the processing nodes can manage: the
number of database connections (dbConnections), the num-
ber of internet connections (webConnections), the amount of
pooled resources (pooledResources), and finally the number
of concurrent streams (concurrentStreams). All these param-
eters are associated with a certain timestamp to monitor their
trend along the time.

A NetworkLink (see Fig. 26a) has an identifier (network-
LinkID), and two or more EndNodes. Each end node has an
identifier (endNodeRole) that refers to procesNodeID play-
ing such role. It optionally contains information about the
network: the available bandwidth (capacity) denoting the
maximum message size it supports, its utilization (usedBand-
width), and the bitRate used in the communication. Note that
the bitRate element uses an enumeration aimed at specify-
ing a set of valid values for that element, i.e. Kbit/s (refer-
ring to Kilobit/second), Mbit/s (referring to Megabit/second),
Gbit/s (referring to Gigabit/second), and other (referring to
any other bit rate unit customized by the user). From a per-
formance perspective, the bit rate of the network is useful
to detect antipatterns in message-based systems that require
heavy communication overhead for sending messages with
a very small amount of information.

Figures 27 and 28 show some examples of elements
belonging to the Deployment View of the XML Schema:
the left sides of the Figures give graphical representations of
a software architectural model, whereas the right sides report
an excerpt of the XML files (compliant to the XML Schema)
representing the features of the software architectural model.

Figure 27 shows an example of the NetworkLink ele-
ment. There are four processing nodes, i.e. proc1, …, proc4,
communicating through two network links: the Network-
Link net1 allows the communication among the processing
nodes proc1, proc2, and proc3; the NetworkLink net2 allows

the communication among the processing nodes proc3, and
proc4. For each network link it is specified the bandwidth and
the utilization; for example, net1 has a capacity of 100 with a
bitRate expressed in Megabit/second and its usedBandwidth
is equal to 0.42.

Figure 28 shows an example of the ProcesNode element.
There is a processing node (proc1) with three hardware enti-
ties, i.e. two cpus (proc1_cpu1, proc1_cpu2) and one disk
(proc1_disk1). For each hardware entity, it is possible to spec-
ify the queue length (qL) and the utilization; for example, the
proc1_cpu1 hardware entity reveals an average utilization of
0.3, and an average queue length of 30 users. Additionally,
some performance metrics are evaluated for the processing
node: the serviceTime keeps the time necessary to perform
a task (i.e. 1.5 s in proc1), and the waitingTime stores how
long incoming requests to the node must wait before being
processed (i.e. 0.01 s in proc1).

In this appendix, we provided a generic data structure
(an XML Schema) collecting all the architectural model ele-
ments that occur in the definitions of antipatterns [37] (such
as software entity, hardware utilization, operation through-
put, etc.). It represents a groundwork for the definition of an-
tipatterns as logical predicates (see Sect. 4), thus to achieve
a formalization of the knowledge commonly encountered by
performance engineers in practice.

Appendix B: Performance antipatterns as logical
predicates

In this appendix, we report the representation of the perfor-
mance antipatterns not presented in Sect. 4.

B.1 Unbalanced Processing

Pipe and Filter Architectures and Extensive Processing antip-
atterns are both manifestations of the unbalanced processing:
“Imagine waiting in an airline check-in line. Multiple agents
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Fig. 26 XML
schema—Deployment View

(a)

(b)
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Fig. 27 An example of the
NetworkLink element

Fig. 28 An example of the
ProcesNode element

can speed-up the process but, if a customer needs to change
an entire itinerary, the agent serving him or her is tied-up for
a long time making those changes. With this agent (proces-
sor) effectively removed from the pool for the time required
to service this request, the entire line moves more slowly and,
as more customers arrive, the line becomes longer” quoted
by [35].

B.2 “Pipe and Filter” Architectures

“Pipe and Filter” Architectures [35] has the following prob-
lem informal definition: “occurs when the slowest filter in a
pipe and filter architecture causes the system to have unac-
ceptable throughput” (see Table 1).

“For example, in the travel analogy, passengers must go
through several stages (or filters): first check in at the ticket

counter, then pass through security, then go through the
boarding process. Recent events have caused each stage to
go more slowly. The security stage tends to be the slowest
filter these days” quoted by [35].

We formalize this sentence with four basic predicates:
the B P1, B P2, B P3 predicates whose elements belong to the
Static View; the B P4 predicate whose elements belong to the
Deployment View.

B P1 There is at least one Operation Op that rep-
resents the slowest filter, i.e. it requires a set of resource
demands higher than a given thresholds set. Let us define by
Fres Demand the function providing the StructuredRe-
sourceDemand of the operation Op that returns an array
of values corresponding to the resource demand(s) the oper-
ation Op requires:

∀i : Fres Demand(Op)[i] ≥ T hres Demand [i] (19)
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B P2 There is at least one Service S that invokes the
OperationInstance OpI that is instance of Op. Let
us define by FprobExec the function that provides the proba-
bility of execution of the operation instance OpI when the
service S is invoked. If it is equal to 1 it means that the Task
referring to such operation is mandatory:

FprobExec(S, OpI ) = 1 (20)

B P3 The throughput of the service S is unacceptable,
i.e. lower than the value defined by an user requirement
T hSth Req . Let us define by FT the function that returns the
Throughput of the service S:

FT (S) < T hSth Req (21)

B P4 The ProcesNode PswEx on which the soft-
ware instance swEx (i.e. the software entity instance that
offers OpI ) is deployed has a heavy computation. For the
formalization of this characteristic, we recall the Fmax HwUtil

function with the ‘all’ option that returns the maximum Uti-
lization among all the hardware entities of the processing
node. We compare such value with a threshold T hmax HwUtil :

Fmax HwUtil(PswEx , all) ≥ T hmax HwUtil (22)

Summarizing, the “Pipe and Filter” Architectures antipat-
tern occurs when the following composed predicate is true:

∃OpI ∈ O, S ∈ S | (19) ∧ (20) ∧ ((21) ∨ (22))

where O represents the set of all the OperationIn-
stances, and S represents the Services in the software
system. Each (OpI, S) instance satisfying the predicate must
be pointed out to the designer for a deeper analysis, because
it represents a “Pipe and Filter” Architectures antipattern.

B.3 Extensive Processing

Extensive Processing [35] has the following problem infor-
mal definition: “occurs when extensive processing in general
impedes overall response time” (see Table 1).

“This situation is analogous to the itinerary-change exam-
ple. It occurs when a long running process monopolizes a
processor. The processor is removed from the pool, but unlike
the pipe and filter example, other work does not have to pass
through this stage before proceeding. This is particularly
problematic if the extensive processing is on the processing
path that is executed for the most frequent workload” quoted
by [35].

We formalize this sentence with four basic predicates:
the B P1, B P2, B P3 predicates whose elements belong to the
Static View; the B P4 predicate whose elements belong to the
Deployment View.

B P1 There are at least two Operations Op1 and Op2

such that: (i) Op1 has a resource demand vector higher
than an upper bound threshold vector (23a); (ii) Op2 has a

resource demand vector lower than a lower bound thresh-
old vector (23b). The StructuredResourceDemand
of the operations is provided by the function Fres Demand

that returns an array of values corresponding to the resource
demand(s) the operations Op1 and Op2 require. In practice:

∀i : Fres Demand(Op1)[i] ≥ T hmax OpRes Demand [i] (23a)

∀i : Fres Demand(Op2)[i] < T hminOpRes Demand [i] (23b)

B P2 There is at least one Service S that invokes the
OperationInstances OpI1 (instance of Op1), and
OpI2 (instance of Op2). Unlike to the “Pipe and Filter”
Architectures, OpI1 and OpI2 are alternately executed in
the service S. This condition can be formalized using the
FprobExec function that returns the probability of execution
of the operation instances OpI1 and OpI2 when the service
S has been invoked, such that:

FprobExec(S, OpI1) + FprobExec(S, OpI2) = 1 (24)

B P3 The response time of the service S is unacceptable,
i.e. larger than the value T hSrt Req defined by a user require-
ment. Let us define by FRT the function that returns the Re-
sponseTime of the service S:

FRT (S) > T hSrt Req (25)

B P4 The ProcesNode PswEx on which the software
instance swEx (i.e. the software entity instance that offers
the operation instance OpI1) is deployed has a heavy compu-
tation. For the formalization of this characteristic, we recall
the Fmax HwUtil function with the ‘all’ option that returns
the maximum Utilization among all the hardware enti-
ties of the processing node. We compare such value with a
threshold T hmax HwUtil :

Fmax HwUtil(PswEx , all) ≥ T hmax HwUtil (26)

Summarizing, the Extensive Processing antipattern occurs
when the following composed predicate is true:

∃OpI1, OpI2 ∈ O, S ∈ S |
(23a) ∧ (23b) ∧ (24) ∧ ((25) ∨ (26))

where O represents the set of all the OperationIn-
stances, and S represents the Services in the software
system. Each (OpI1, OpI2, S) instance satisfying the predi-
cate must be pointed out to the designer for a deeper analysis,
because it represents an Extensive Processing antipattern.

B.4 Tower of Babel

Tower of Babel [37] has the following problem informal def-
inition: “occurs when processes excessively convert, parse,
and translate internal data into a common exchange format
such as XML” (see Table 1).
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We formalize this sentence with two basic predicates: the
B P1 predicate whose elements belong to the Dynamic View;
the B P2 predicate whose elements belong to the Deployment
View.

B P1 There is at least one Service S in which the infor-
mation is often translated from an internal format to an
exchange format, and back. Let us define by Fnum Ex F the
function that counts how many times the format is changed
in the service S by a SoftwareEntityInstance swEx .
The antipattern can occur when this function returns a value
higher or equal than a threshold T hmax Ex F :

Fnum Ex F (swEx , S) ≥ T hmax Ex F (27)

B P2 The ProcesNode PswEx on which the software
entity instance swEx is deployed has a heavy computation.
That is, the Utilization of hardware entities belong-
ing to the ProcesNode PswEx exceeds a threshold value.
For the formalization of this characteristic, we recall the
Fmax HwUtil function, with the ’all’ option that returns the
maximum Utilization among the ones of the hardware
entities of the processing node:

Fmax HwUtil(PswEx , all) ≥ T hmax HwUtil (28)

Summarizing, the Tower of Babel antipattern occurs when
the following composed predicate is true:

∃swEx ∈ swE, S ∈ S | (27) ∧ (28)

where swE represents the set of all SoftwareEntityIn-
stances, and S represents the Services in the software
system. Each (swEx , S) instance satisfying the predicate
must be pointed out to the designer for a deeper analysis,
because it represents a Tower of Babel antipattern.

B.5 One-Lane Bridge

One-Lane Bridge [33] has the following problem informal
definition: “occurs at a point in execution where only one, or
a few, processes may continue to execute concurrently (e.g.
when accessing a database). Other processes are delayed
while they wait for their turn” (see Table 1).

We formalize this sentence with four basic predicates:
the B P1 and B P2 predicates whose elements belong to the
Dynamic View; the B P3 predicate whose elements belong to
the Static View.

B P1 There is at least one SoftwareEntityIn-
stance swEx that receives a large number of synchronous
calls, i.e. its capacity (i.e. the parallelism degree) is lower
than the incoming requests rate in a service S. Let us define
by FnumSynchCalls the function providing the number of syn-
chronous calls that swEx receives for a service S, and by
FpoolSi ze the function providing the pool size capacity of
swEx :

FnumSynchCalls(swEx , S) 
 FpoolSi ze(swEx ) (29)

B P2 The requests incoming to the processing node on
which swEx is deployed are delayed, the ServiceTime
is much lower than the WaitingTime. Let us define by
FserviceT ime and FwaitingT ime the functions providing the
service time and the waiting time, respectively, for the pro-
cessing node PswEx :

FserviceT ime(PswEx ) � FwaitingT ime(PswEx ) (30)

B P3 The response time of the service S is unacceptable,
i.e. larger than the value T hSrt Req defined by a user require-
ment. Let us define by FRT the function that returns the Re-
sponseTime of the service S:

FRT (S) > T hSrt Req (31)

Summarizing, the One-Lane Bridge antipattern occurs
when the following composed predicate is true:

∃swEx ∈ swE, S ∈ S | (29) ∧ (30) ∧ (31)

where swE represents theSoftwareEntityInstances,
and S represents the Services in the software system. Each
(swEx , S) instance satisfying the predicate must be pointed
out to the designer for a deeper analysis, because it represents
a One-Lane Bridge antipattern.

B.6 Excessive Dynamic Allocation

Excessive Dynamic Allocation [33] has the following prob-
lem informal definition: “occurs when an application unnec-
essarily creates and destroys large numbers of objects during
its execution. The overhead required to create and destroy
these objects has a negative impact on performance” (see
Table 1).

We formalize this sentence with two basic predicates: the
B P1 predicate whose elements belong to the Dynamic View,
and the B P2 predicate whose elements belong to the Static
View.

B P1 There is at least one Service S in which objects
are created in a “just-in-time” approach, when their capabil-
ities are needed, and then destroyed when they are no longer
required. Let us define by FnumCreated Obj the function that
calculates the number of created objects (i.e. IsCreate-
ObjectAction), and Fnum Destroyed Obj the function that
returns the number of destroyed ones (i.e. IsDestroyOb-
jectAction):

FnumCreated Obj (S) ≥ T hmaxCr Obj (32)

Fnum Destroyed Obj (S) ≥ T hmax DeObj (33)

B P2 The overhead for creating and destroying a single
object may be small, but when a large number of objects are
frequently created and then destroyed, the response time may
be significantly increased. Let us recall the function FRT that
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returns the ResponseTime of the service S. If such value
is larger than the user requirement, then the antipattern can
occur:

FRT (S) > T hSrt Req (34)

Summarizing, the Excessive Dynamic Allocation antipat-
tern occurs when the following composed predicate is true:

∃S ∈ S | ((32) ∨ (33)) ∧ (34)

where S represents the set of all the Services in the soft-
ware system. Each S instance satisfying the predicate must
be pointed out to the designer for a deeper analysis, because
it represents an Excessive Dynamic Allocation antipattern.

B.7 The Ramp

The Ramp [37] has the following problem informal defini-
tion: “occurs when processing time increases as the system
is used” (see Table 1).

We formalize this sentence with two basic predicates: the
B P1 and B P2 predicates whose elements belong to the Static
View.

B P1 There is at least one OperationInstance OpI
that has an increasing value for the response time along
different observation time slots. Let us define by FRT the
function that returns the mean ResponseTime of the oper-
ation instance OpI observed in the time slot t . The Ramp
can occur when the average response time of the operation
instance increases in n consecutive time slots, which means
that it is higher than a threshold T hOpRtV ar :
∑

1≤t≤n |FRT (OpI, t) − FRT (OpI, t − 1)|
n

> T hOpRtV ar

(35)

B P2 TheOperationInstance OpI shows a decreas-
ing value for the throughput along different observation time
slots. Let us define by FT the function that returns the mean
Throughput of the operation instance OpI observed in
the time slot t . The Ramp occurs when the absolute value of
the average throughput of the operation instance increases in
n consecutive time slots, which means that it is higher than
a threshold T hOpT hV ar :
∑

1≤t≤n |FT (OpI, t) − FT (OpI, t − 1)|
n

> T hOpT hV ar

(36)

Summarizing, The Ramp antipattern occurs when the fol-
lowing composed predicate is true:

∃OpI ∈ O | (35) ∧ (36)

where O represents the set of all the OperationIn-
stances in the software system. Each OpI instance satis-

fying the predicate must be pointed out to the designer for a
deeper analysis, because it represents The Ramp antipattern.

B.8 More is Less

More is Less [35] has the following problem informal defini-
tion: “occurs when a system spends more time “thrashing”
than accomplishing real work because there are too many
processes relative to available resources” (see Table 1).

We formalize this sentence with one basic predicate: the
B P1 predicate whose elements belong to the Deployment
View.

B P1 There is at least one ProcesNode Px whose con-
figuration parameters are not able to support the workload
required to the software system. The parameters we refer are
the number of concurrent dbConnections, the webConnec-
tions, the pooledResources, or the concurrentStreams.

Let us define by Fpar [i] the function that returns the
ith configuration parameter defined for the system; and by
FRT par [i] the function returning the ith run time parame-
ter observed in the time slot t . The More is Less antipattern
can occur when the configuration parameters are much lower
than the average values of the run time parameters in n con-
secutive time slots:

∀i : Fpar (Px )[i]
�

∑
1≤t≤n(FRT par (Px , t)[i] − FRT par (Px , t − 1)[i])

n
(37)

Summarizing, the More is Less antipattern occurs when
the following predicate is true:

∃Px ∈ P | (37)

where P represents the set of all the ProcesNodes in the
software system. Each Px instance satisfying the predicate
must be pointed out to the designer for a deeper analysis,
because it represents a More is Less antipattern.

Appendix C: Summary

This section summarizes the auxiliary functions and the
thresholds introduced for representing antipatterns as logi-
cal predicates.

Table 10 reports the supporting functions we need to quan-
tify specific aspects of the software architectural model ele-
ments. In particular, the first column of the Table shows
the signature of the function and the second column pro-
vides its description. For example, in the first row the
FnumClientConnects function takes as input one software entity
instance and returns an integer that represents the multiplicity
of the relationships where swEx assumes the client role.
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Table 10 Functions specification

Signature Description

int FnumClientConnects (SoftwareEntityInstance swEx ) It counts the multiplicity of the relationships among software entity instances
where swEx is involved as client

int FnumSupplierConnects (SoftwareEntityInstance swEx ) It counts the multiplicity of the relationships among software entity instances
where swEx is involved as supplier

int FnumMsgs (SoftwareEntityInstance swEx ,
SoftwareEntityInstance swEy , Service S)

It counts the number of messages sent from swEx to swEy in a service S

float Fmax HwUtil (ProcesNode pnx , type T ) It provides the maximum hardware utilization among the hardware devices of
a certain type T ={cpu, disk, all} composing the processing node pnx

float Fmax NetUtil (ProcesNode pnx , ProcesNode pny) It provides the maximum utilization among the network links joining the
processing nodes pnx and pny

float Fmax NetUtil (ProcesNode pnx ,
SoftwareEntityInstance swEx )

It provides the maximum utilization among the network links used by swEx ,
deployed on pnx , to interact with other software entity instances

float Fmax QL (ProcesNode pnx ) It provides the maximum queue length among the hardware devices
composing the processing node pnx

int[ ] Fres Demand (Operation Op) It provides the resource demand of the operation Op

float FprobExec (Service S, Operation Op) It provides the probability the operation Op is executed in the service S

float FT (Service S) It provides the estimated throughput of the service S at the steady-state

float FRT (Service S) It provides the estimated response time of the service S at the steady-state

float FT (Service S, timeInterval t) It provides the estimated throughput of the service S at the time interval t

float FRT (Service S, timeInterval t) It provides the estimated response time of the service S at the time interval t

int Fnum DBmsgs (SoftwareEntityInstance swEx ,
SoftwareEntityInstance swEy , Service S)

It counts the number of requests generated by swEx to the database
swEy in a service S

int Fnum RemMsgs (SoftwareEntityInstance swEx , Service S) It counts the number of remote messages sent by swEx in a service S

int Fnum Rem I nst (SoftwareEntityInstance swEx , Service S) It provides the number of remote instances with which swEx communicates
in a service S

int Fnum Ex F (SoftwareEntityInstance swEx , Service S) It provides the number of exchange formats performed by swEx in a service S

int FnumSynchCalls (SoftwareEntityInstance swEx , Service S) It provides the number of synchronous calls swEx receives in a service S

int FpoolSi ze (SoftwareEntityInstance swEx ) It provides the pool size capacity of swEx

float FserviceT ime (ProcesNode pnx ) It provides the service time of pnx

float FwaitingT ime (ProcesNode pnx ) It provides the waiting time of pnx

int FnumCreated Obj (Service S) It provides the number of objects dynamically created in a service S

int Fnum Destroyed Obj (Service S) It provides the number of objects dynamically destroyed in a service S

int[ ] Fpar (ProcesNode pnx ) It provides the array of configuration parameters related to the pnx
processing node

int[ ] FRT par (ProcesNode pnx , timeInterval t) It provides the array of configuration parameters related to the pnx
processing node at the time interval t

Table 11 reports the thresholds we need to evaluate soft-
ware boundaries. In particular, the first column of the table
shows the name of the threshold, the second column provides
its description, and finally in the third column it is proposed
an heuristics to estimate its numerical value. For example,
the T hmaxConnects threshold represents the maximum bound
for the number of usage relationships a software entity is
involved in. It can be estimated as the average number of
usage relationships, with reference to the entire set of soft-
ware instances in the software system, plus the corresponding
variance.

Table 12 summarizes the thresholds we need to evalu-
ate hardware boundaries, i.e. queue length and utilization
bounds. The T hmax QL threshold represents the maximum
bound for the hardware device queue length that can be esti-
mated as the average number of all the queue length values,

with reference to the entire set of hardware devices in the
software system, plus the corresponding variance. Utilization
thresholds can be instead refined with ε offsets that allow to
more precisely determine upper and lower bounds.

Table 13 reports the thresholds we need to evaluate service
boundaries. In particular, the first column of the Table shows
the name of the threshold and the second column provides its
description. For example, the T hSth Req threshold represents
the required value for the throughput of the service S. These
types of thresholds do not require an heuristic process since
we expect that they are defined by software designers in the
requirements specification phase.

Table 14 reports the thresholds we need to evaluate oper-
ation slopes along the time. For example, in the first row the
T hOpRtV ar threshold represents the maximum feasible slope
of the response time observed in n consecutive time slots for
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Table 11 Thresholds specification: software characteristics

Threshold Description Heuristics

T hmaxConnects It represents the maximum bound
for the number of usage
relationships a software entity is
involved

It can be estimated as the average number of usage relationships per
software entity instance, by considering the entire set of software
instances in the software system, plus the corresponding variance

T hmax Msgs It represents the maximum bound
for the number of messages sent
by a software entity in a service

It can be estimated as the average number of sent messages per
software entity instance, by considering the entire set of software
instances in the software system, plus the corresponding variance

T hmax DBmsgs It represents the maximum bound
for the number of database
requests in a service

It can be estimated as the average number of database requests per
software entity instance, by considering the entire set of software
instances in the software system, plus the corresponding variance

T hmax RemMsgs It represents the maximum bound
for the number of remote
messages in a service

It can be estimated as the average number of remote messages per
software entity instance, by considering the entire set of software
instances in the software system, plus the corresponding variance

T hmax Rem I nst It represents the maximum bound
for the number of remote
communicating instances in a
service

It can be estimated as the average number of remote communicating
instances per software entity instance, by considering the entire set
of software instances in the software system, plus the corresponding
variance

T hmax Ex F It represents the maximum bound
for the number of exchange
formats

It can be estimated as the average number of exchanging formats per
software entity instance, by considering the entire set of software
instances in the software system, plus the corresponding variance

T hmax Res Demand [i] It represents the maximum bound
for the resource demand of
operations

It can be estimated as the average number of resource demands
required by a software entity instance, by considering the entire set
of software operations in the software system, plus the
corresponding variance

T hmin Res Demand [i] It represents the minimum bound
for the resource demand of
operations

It can be estimated as the average number of resource demands
required by a software entity instance, by considering the entire set
of software operations in the software system, minus the
corresponding variance

T hmaxCr Obj It represents the maximum bound
for the number of created objects

It can be estimated as the average number of objects dynamically
created per software entity instance, by considering the entire set of
software instances in the software system, plus the corresponding
variance

T hmax DeObj It represents the maximum bound
for the number of destroyed
objects

It can be estimated as the average number of objects dynamically
destroyed per software entity instance, by considering the entire set
of software instances in the software system, plus the corresponding
variance

Table 12 Thresholds specification: hardware characteristics

Threshold Description Heuristics

T hmax QL It represents the maximum bound
for the queue length utilization

It can be estimated as the average number of all hardware devices
queue length values, plus the corresponding variance

T hmax HwUtil It represents the maximum bound
for the hardware device
utilization

It can be estimated as the average number of all hardware devices
utilization values, plus the ε offset

T hmax NetUtil It represents the maximum bound
for the network link utilization

It can be estimated as the average used bandwidth values, with
reference to the entire set of network links in the software system,
plus the ε offset

T hminNetUtil It represents the minimum bound
for the network link utilization

It can be estimated as the average used bandwidth values, with
reference to the entire set of network links in the software system,
minus the ε offset

T hmaxCpuUtil It represents the maximum bound
for the cpu utilization

It can be estimated as the mean cpu devices utilization values, plus the
ε offset

T hmax DiskUtil It represents the maximum bound
for the disk utilization

It can be estimated as the mean disk devices utilization values, plus the
ε offset

T hminCpuUtil It represents the minimum bound
for the cpu utilization

It can be estimated as the mean cpu devices utilization values, minus
the ε offset

T hminDiskUtil It represents the minimum bound
for the disk utilization

It can be estimated as the mean disk devices utilization values, minus
the ε offset
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Table 13 Thresholds
specification: requirements Threshold Description

T hSth Req It represents the required value for the throughput of the service S

T hSrt Req It represents the required value for the response time of the service S

Table 14 Thresholds
specification: slopes Threshold Description

T hOpRtV ar It represents the maximum feasible slope of the response time
observed in n consecutive time slots for the operation Op

T hOpT hV ar It represents the maximum feasible slope of the throughput observed
in n consecutive time slots for the operation Op

Table 15 A logic-based representation of Performance Antipatterns

Antipattern Formula

Single-value Circuitous Treasure Hunt ∃swEx , swEy ∈ swE, S ∈ S | swEy .is DB = true ∧ Fnum DBmsgs(swEx , swEy , S) ≥
T hmax DBmsgs ∧ Fmax HwUtil(PswEy , all) ≥
T hmax HwUtil ∧ Fmax HwUtil(PswEy , disk) > Fmax HwUtil(PswEy , cpu)

Blob (or god class/component) ∃swEx , swEy ∈ swE, S ∈ S | (FnumClientConnects(swEx ) ≥
T hmaxConnects ∨ FnumSupplierConnects(swEx ) ≥ T hmaxConnects ) ∧
(FnumMsgs(swEx , swEy , S) ≥ T hmax Msgs ∨ FnumMsgs(swEy , swEx , S) ≥
T hmax Msgs ) ∧ (Fmax HwUtil (Pxy, all) ≥
T hmax HwUtil ∨ Fmax NetUtil(PswEx , PswEy ) ≥ T hmax NetUtil )

Unbalanced processing

Concurrent Processing Systems ∃Px , Py ∈ P | Fmax QL (Px ) ≥ T hmax QL ∧ [(Fmax HwUtil(Px , cpu) ≥
T hmaxCpuUtil ∧ Fmax HwUtil (Py, cpu) < T hminCpuUtil ) ∨ (Fmax HwUtil(Px , disk) ≥
T hmax DiskUtil ∧ (Fmax HwUtil (Py, disk) < T hminDiskUtil))]

“Pipe and Filter” Architectures ∃OpI ∈ O, S ∈ S | ∀i : Fres Demand (Op)[i] ≥ T hres Demand [i]∧ FprobExec(S, OpI ) =
1 ∧ (FT (S) < T hSth Req ∨ Fmax HwUtil(PswEx , all) ≥ T hmax HwUtil)

Extensive Processing ∃OpI1, OpI2 ∈ O, S ∈ S | ∀i : Fres Demand (Op1)[i] ≥ T hmax OpRes Demand [i] ∧ ∀i :
Fres Demand (Op2)[i] <

T hminOpRes Demand [i] ∧ FprobExec(S, OpI1) + FprobExec(S, OpI2) =
1 ∧ (FRT (S) > T hSrt Req ∨ Fmax HwUtil(PswEx , all) ≥ T hmax HwUtil)

Empty semi trucks ∃swEx ∈ swE, S ∈ S | Fnum RemMsgs(swEx , S) ≥ T hmax RemMsgs ∧
Fmax NetUtil(PswEx , swEx ) < T hminNetUtil ∨ Fnum Rem I nst (swEx , S) ≥ T hmax Rem I nst )

Tower of Babel ∃swEx ∈ swE, S ∈ S | Fnum Ex F (swEx , S) ≥
T hmax Ex F ∧ Fmax HwUtil(PswEx , all) ≥ T hmax HwUtil

One-Lane Bridge ∃swEx ∈ swE, S ∈ S | FnumSynchCalls(swEx , S) 
 FpoolSi ze(swEx ) ∧
FserviceT ime(PswEx ) � FwaitingT ime(PswEx ) ∧ FRT (S) > T hSrt Req

Excessive dynamic allocation ∃S ∈ S | (FnumCreated Obj (S) ≥ T hmaxCr Obj ∨ Fnum Destroyed Obj (S) ≥
T hmax DeObj ) ∧ FRT (S) > T hSrt Req

Multiple-values The Ramp ∃OpI ∈ O |
∑

1≤t≤n |(FRT (OpI,t)−FRT (OpI,t−1))|
n >

T hOpRtV ar ∧
∑

1≤t≤n |(FT (OpI,t)−FT (OpI,t−1))|
n > T hOpT hV ar

Traffic Jam ∃OpI ∈ O |
∑

1≤t≤k |(FRT (OpI,t)−FRT (OpI,t−1))|
k−1 <

T hOpRtV ar ∧ |FRT (OpI, k) − FRT (OpI, k − 1)| >

T hOpRtV ar ∧
∑

k≤t≤n |(FRT (OpI,t)−FRT (OpI,t−1))|
n−k < T hOpRtV ar

More is Less ∃Px ∈ P | ∀i : Fpar (Px )[i] �
∑

1≤t≤n (FRT par (Px ,t)[i]−FRT par (Px ,t−1)[i])
n

the operation Op. This type of thresholds is necessary for
multiple-values antipatterns, and their values depend from
the time slot width. This characteristic makes difficult their
estimation that should be provided by domain experts.

Finally, Table 15 lists the logic-based representation of the
performance antipatterns we propose. Each row represents a
specific antipattern reporting its name and the first-order log-
ics formula modeling it.
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